BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33314925)

  • 1. HER2 Kinase-Targeted Breast Cancer Therapy: Design, Synthesis, and
    Elwaie TA; Abbas SE; Aly EI; George RF; Ali H; Kraiouchkine N; Abdelwahed KS; Fandy TE; El Sayed KA; Abd Elmageed ZY; Ali HI
    J Med Chem; 2020 Dec; 63(24):15906-15945. PubMed ID: 33314925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain.
    Gril B; Palmieri D; Bronder JL; Herring JM; Vega-Valle E; Feigenbaum L; Liewehr DJ; Steinberg SM; Merino MJ; Rubin SD; Steeg PS
    J Natl Cancer Inst; 2008 Aug; 100(15):1092-103. PubMed ID: 18664652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2
    Xu X; De Angelis C; Burke KA; Nardone A; Hu H; Qin L; Veeraraghavan J; Sethunath V; Heiser LM; Wang N; Ng CKY; Chen ES; Renwick A; Wang T; Nanda S; Shea M; Mitchell T; Rajendran M; Waters I; Zabransky DJ; Scott KL; Gutierrez C; Nagi C; Geyer FC; Chamness GC; Park BH; Shaw CA; Hilsenbeck SG; Rimawi MF; Gray JW; Weigelt B; Reis-Filho JS; Osborne CK; Schiff R
    Clin Cancer Res; 2017 Sep; 23(17):5123-5134. PubMed ID: 28487443
    [No Abstract]   [Full Text] [Related]  

  • 4. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib.
    Huang W; Wu QD; Zhang M; Kong YL; Cao PR; Zheng W; Xu JH; Ye M
    Cancer Lett; 2015 Jan; 356(2 Pt B):862-71. PubMed ID: 25449780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.
    Valabrega G; Capellero S; Cavalloni G; Zaccarello G; Petrelli A; Migliardi G; Milani A; Peraldo-Neia C; Gammaitoni L; Sapino A; Pecchioni C; Moggio A; Giordano S; Aglietta M; Montemurro F
    Breast Cancer Res Treat; 2011 Nov; 130(1):29-40. PubMed ID: 21153051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors.
    Lin CH; Pelissier FA; Zhang H; Lakins J; Weaver VM; Park C; LaBarge MA
    Mol Biol Cell; 2015 Nov; 26(22):3946-53. PubMed ID: 26337386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bruton's Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells.
    Wang X; Wong J; Sevinsky CJ; Kokabee L; Khan F; Sun Y; Conklin DS
    Mol Cancer Ther; 2016 Sep; 15(9):2198-208. PubMed ID: 27256378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of Lapatinib derivatives containing a branched side chain as HER1/HER2 targeting antitumor drug candidates.
    Lyu A; Fang L; Gou S
    Eur J Med Chem; 2014 Nov; 87():631-42. PubMed ID: 25305330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.
    Park SH; Ito K; Olcott W; Katsyv I; Halstead-Nussloch G; Irie HY
    Breast Cancer Res; 2015 Jun; 17(1):86. PubMed ID: 26084280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagy stimulates apoptosis in HER2-overexpressing breast cancers treated by lapatinib.
    Zhu X; Wu L; Qiao H; Han T; Chen S; Liu X; Jiang R; Wei Y; Feng D; Zhang Y; Ma Y; Zhang S; Zhang J
    J Cell Biochem; 2013 Dec; 114(12):2643-53. PubMed ID: 23794518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the EphB4 receptor tyrosine kinase sensitizes HER2-positive breast cancer cells to Lapatinib.
    Ding J; Yao Y; Huang G; Wang X; Yi J; Zhang N; Liu C; Wang K; Zhang Y; Wang M; Liu P; Ye M; Li M; Cheng H
    Cancer Lett; 2020 Apr; 475():53-64. PubMed ID: 32006616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mislocalization of p27 to the cytoplasm of breast cancer cells confers resistance to anti-HER2 targeted therapy.
    Zhao H; Faltermeier CM; Mendelsohn L; Porter PL; Clurman BE; Roberts JM
    Oncotarget; 2014 Dec; 5(24):12704-14. PubMed ID: 25587029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo.
    Wainberg ZA; Anghel A; Desai AJ; Ayala R; Luo T; Safran B; Fejzo MS; Hecht JR; Slamon DJ; Finn RS
    Clin Cancer Res; 2010 Mar; 16(5):1509-19. PubMed ID: 20179222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer.
    Bhat RR; Yadav P; Sahay D; Bhargava DK; Creighton CJ; Yazdanfard S; Al-Rawi A; Yadav V; Qin L; Nanda S; Sethunath V; Fu X; De Angelis C; Narkar VA; Osborne CK; Schiff R; Trivedi MV
    Breast Cancer Res Treat; 2018 Jul; 170(2):279-292. PubMed ID: 29574636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lapatinib and 17AAG reduce 89Zr-trastuzumab-F(ab')2 uptake in SKBR3 tumor xenografts.
    Oude Munnink TH; de Vries EG; Vedelaar SR; Timmer-Bosscha H; Schröder CP; Brouwers AH; Lub-de Hooge MN
    Mol Pharm; 2012 Nov; 9(11):2995-3002. PubMed ID: 23003202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2.
    Hanker AB; Garrett JT; Estrada MV; Moore PD; Ericsson PG; Koch JP; Langley E; Singh S; Kim PS; Frampton GM; Sanford E; Owens P; Becker J; Groseclose MR; Castellino S; Joensuu H; Huober J; Brase JC; Majjaj S; Brohée S; Venet D; Brown D; Baselga J; Piccart M; Sotiriou C; Arteaga CL
    Clin Cancer Res; 2017 Aug; 23(15):4323-4334. PubMed ID: 28381415
    [No Abstract]   [Full Text] [Related]  

  • 17. Preclinical antitumor activity of the novel heat shock protein 90 inhibitor CH5164840 against human epidermal growth factor receptor 2 (HER2)-overexpressing cancers.
    Ono N; Yamazaki T; Nakanishi Y; Fujii T; Sakata K; Tachibana Y; Suda A; Hada K; Miura T; Sato S; Saitoh R; Nakano K; Tsukuda T; Mio T; Ishii N; Kondoh O; Aoki Y
    Cancer Sci; 2012 Feb; 103(2):342-9. PubMed ID: 22050138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer.
    Cai X; Zhai HX; Wang J; Forrester J; Qu H; Yin L; Lai CJ; Bao R; Qian C
    J Med Chem; 2010 Mar; 53(5):2000-9. PubMed ID: 20143778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative anti-proliferative effects of potential HER2 inhibitors on a panel of breast cancer cell lines.
    Zalloum H; AbuThiab T; Hameduh T; AlBayyari S; Zalloum W; Abu-Irmaileh B; Mubarak MS; Zihlif M
    Breast Cancer; 2020 Mar; 27(2):213-224. PubMed ID: 31559601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.
    Chen J; Kinoshita T; Sukbuntherng J; Chang BY; Elias L
    Mol Cancer Ther; 2016 Dec; 15(12):2835-2844. PubMed ID: 27678331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.