BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33315078)

  • 1. Changes in the Summer Wild Bee Community Following a Bark Beetle Outbreak in a Douglas-fir Forest.
    Foote GG; Foote NE; Runyon JB; Ross DW; Fettig CJ
    Environ Entomol; 2020 Dec; 49(6):1437-1448. PubMed ID: 33315078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wild Bee Response to Application of the Douglas-fir Beetle Anti-Aggregation Pheromone, 3-Methylcyclohex-2-En-1-One.
    Foote GG; Runyon JB; Fettig CJ; Foote NE; Ross DW
    J Econ Entomol; 2021 Oct; 114(5):2121-2126. PubMed ID: 34260727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone.
    Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG
    Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Biodegradable Formulation of MCH (3-Methylcyclohex-2-en-1-one) for Protecting Pseudotsuga menziesii from Dendroctonus pseudotsugae (Coleoptera: Curculionidae) Colonization.
    Foote GG; Fettig CJ; Ross DW; Runyon JB; Coleman TW; Gaylord ML; Graves AD; McMillin JD; Mortenson LA; Mafra-Neto A
    J Econ Entomol; 2020 Aug; 113(4):1858-1863. PubMed ID: 32281631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenology of Douglas-Fir Beetle (Coleoptera: Curculionidae) and Its Role in Douglas-Fir Mortality in Western Washington.
    Freeman MB; Labarge A; Tobin PC
    Environ Entomol; 2020 Feb; 49(1):246-254. PubMed ID: 31820791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests.
    Harvey BJ; Donato DC; Romme WH; Turner MG
    Ecology; 2013 Nov; 94(11):2475-86. PubMed ID: 24400499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains.
    Davis TS; Rhoades PR; Mann AJ; Griswold T
    Sci Rep; 2020 Oct; 10(1):16400. PubMed ID: 33009441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types.
    Griffin JM; Turner MG
    Oecologia; 2012 Oct; 170(2):551-65. PubMed ID: 22492169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bee diversity decreases rapidly with time since harvest in intensively managed conifer forests.
    Zitomer RA; Galbraith SM; Betts MG; Moldenke AR; Progar RA; Rivers JW
    Ecol Appl; 2023 Jul; 33(5):e2855. PubMed ID: 37040202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Douglas-fir and western larch: chemical and physical properties in relation to Douglas-fir bark beetle attack.
    Reed AN; Hanover JW; Furniss MM
    Tree Physiol; 1986 Dec; 1(3):277-87. PubMed ID: 14975882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of 3-Carene in Host Location and Colonization by Dendroctonus pseudotsugae (Coleoptera: Curculionidae).
    Ross DW; Neal TA; Wallin KF
    Environ Entomol; 2022 Feb; 51(1):190-195. PubMed ID: 34698824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing.
    Andrus RA; Hart SJ; Veblen TT
    Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conifers and non-native tree species shift trophic niches of generalist arthropod predators in Central European beech forests.
    Wildermuth B; Fardiansah R; Matevski D; Lu JZ; Kriegel P; Scheu S; Schuldt A
    BMC Ecol Evol; 2023 Feb; 23(1):3. PubMed ID: 36737705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High release rate 3-methylcyclohex-2-en-1-one dispensers prevent Douglas-fir beetle (Coleoptera: Curculionidae) infestation of live Douglas-fir.
    Ross DW; Wallin KF
    J Econ Entomol; 2008 Dec; 101(6):1826-30. PubMed ID: 19133463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA.
    Wayman RB; Safford HD
    Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.
    Seidl R; Donato DC; Raffa KF; Turner MG
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (
    Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H
    Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment.
    Fornoff F; Staab M; Zhu CD; Klein AM
    Oecologia; 2021 May; 196(1):289-301. PubMed ID: 33895883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.