These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33315133)

  • 21. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.
    Bayani J; Zielenska M; Pandita A; Al-Romaih K; Karaskova J; Harrison K; Bridge JA; Sorensen P; Thorner P; Squire JA
    Genes Chromosomes Cancer; 2003 Jan; 36(1):7-16. PubMed ID: 12461745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation.
    Nilsson D; Pettersson M; Gustavsson P; Förster A; Hofmeister W; Wincent J; Zachariadis V; Anderlid BM; Nordgren A; Mäkitie O; Wirta V; Käller M; Vezzi F; Lupski JR; Nordenskjöld M; Lundberg ES; Carvalho CMB; Lindstrand A
    Hum Mutat; 2017 Feb; 38(2):180-192. PubMed ID: 27862604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo apparently balanced complex chromosome rearrangement (CCR) involving chromosomes 4, 18, and 21 in a girl with mental retardation: report and review.
    Batanian JR; Eswara MS
    Am J Med Genet; 1998 Jun; 78(1):44-51. PubMed ID: 9637422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63.
    Lim G; Karaskova J; Vukovic B; Bayani J; Beheshti B; Bernardini M; Squire JA; Zielenska M
    Cancer Genet Cytogenet; 2004 Sep; 153(2):158-64. PubMed ID: 15350306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex chromosomal rearrangements: some breakpoints may have cellular adaptive significance.
    Lurie IW; Wulfsberg EA; Prabhakar G; Rosenblum-Vos LS; Supovitz KR; Cohen MM
    Clin Genet; 1994 Sep; 46(3):244-7. PubMed ID: 7529663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-read Oxford nanopore sequencing reveals a de novo case of complex chromosomal rearrangement involving chromosomes 2, 7, and 13.
    Xing L; Shen Y; Wei X; Luo Y; Yang Y; Liu H; Liu H
    Mol Genet Genomic Med; 2022 Sep; 10(9):e2011. PubMed ID: 35758276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A complex chromosomal rearrangement with a translocation 4;10;14 in a fertile male carrier: ascertainment through an offspring with partial trisomy 14q13-->q24.1 and partial monosomy 4q27-->q28 [corrected].
    Grasshoff U; Singer S; Liehr T; Starke H; Fode B; Schöning M; Dufke A
    Cytogenet Genome Res; 2003; 103(1-2):17-23. PubMed ID: 15004458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Integrated Approach Including CRISPR/Cas9-Mediated Nanopore Sequencing, Mate Pair Sequencing, and Cytogenomic Methods to Characterize Complex Structural Rearrangements in Acute Myeloid Leukemia.
    Phan M; Gomes MA; Stinnett V; Morsberger L; Hoppman NL; Pearce KE; Smith K; Phan B; Jiang L; Zou YS
    Biomedicines; 2024 Mar; 12(3):. PubMed ID: 38540211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cytogenetic characterization of a constitutional complex intrachromosomal 4q rearrangement in a patient with multiple congenital anomalies.
    Thienpont B; Gewillig M; Fryns JP; Devriendt K; Vermeesch J
    Cytogenet Genome Res; 2006; 114(3-4):338-41. PubMed ID: 16954676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern.
    Yanagishita T; Imaizumi T; Yamamoto-Shimojima K; Yano T; Okamoto N; Nagata S; Yamamoto T
    Hum Mutat; 2020 Dec; 41(12):2119-2127. PubMed ID: 32906213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromoanagenesis Event Underlies a
    Grochowski CM; Krepischi ACV; Eisfeldt J; Du H; Bertola DR; Oliveira D; Costa SS; Lupski JR; Lindstrand A; Carvalho CMB
    Front Genet; 2021; 12():708348. PubMed ID: 34512724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping.
    Rao H; Zhang H; Zou Y; Ma P; Huang T; Yuan H; Zhou J; Lu W; Li Q; Huang S; Liu Y; Yang B
    Front Genet; 2023; 14():1248755. PubMed ID: 37732322
    [No Abstract]   [Full Text] [Related]  

  • 34. Molecular analysis of a constitutional complex genome rearrangement with 11 breakpoints involving chromosomes 3, 11, 12, and 21 and a approximately 0.5-Mb submicroscopic deletion in a patient with mild mental retardation.
    Borg K; Stankiewicz P; Bocian E; Kruczek A; Obersztyn E; Lupski JR; Mazurczak T
    Hum Genet; 2005 Nov; 118(2):267-75. PubMed ID: 16160854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a complex rearrangement with interstitial deletions and inversion on human chromosome 1.
    Gajecka M; Glotzbach CD; Shaffer LG
    Chromosome Res; 2006; 14(3):277-82. PubMed ID: 16628498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements.
    Ballif BC; Wakui K; Gajecka M; Shaffer LG
    Hum Genet; 2004 Jan; 114(2):198-206. PubMed ID: 14579147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-alpha in the liver.
    Sargent LM; Zhou X; Keck CL; Sanderson ND; Zimonjic DB; Popescu NC; Thorgeirsson SS
    Am J Pathol; 1999 Apr; 154(4):1047-55. PubMed ID: 10233843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas.
    Bertrand P; Bastard C; Maingonnat C; Jardin F; Maisonneuve C; Courel MN; Ruminy P; Picquenot JM; Tilly H
    Leukemia; 2007 Mar; 21(3):515-23. PubMed ID: 17230227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breakpoints in complex chromosomal rearrangements correspond to transposase-accessible regions of DNA from mature sperm.
    Sugimoto T; Inagaki H; Mariya T; Kawamura R; Taniguchi-Ikeda M; Mizuno S; Muramatsu Y; Tsuge I; Ohashi H; Saito N; Hasegawa Y; Ochi N; Yamaguchi M; Murotsuki J; Kurahashi H
    Hum Genet; 2023 Oct; 142(10):1451-1460. PubMed ID: 37615740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a complex rearrangement of a chromosome 20 by FISH and array CGH.
    Bertini V; Valetto A; Baroncelli GI; Simi P
    Eur J Med Genet; 2011; 54(4):e419-24. PubMed ID: 21440097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.