BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 3331516)

  • 1. Status of calcium influx in cell cycle of S. cerevisiae.
    Anand S; Prasad R
    Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells.
    Dudani AK; Prasad R
    Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.
    Kitagaki H; Ito K; Shimoi H
    Eukaryot Cell; 2004 Oct; 3(5):1297-306. PubMed ID: 15470258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae.
    Motizuki M; Yokota S; Tsurugi K
    Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E.
    Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation.
    Ohya Y; Miyamoto S; Ohsumi Y; Anraku Y
    J Bacteriol; 1986 Jan; 165(1):28-33. PubMed ID: 3510189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression.
    Mónaco ME; Valdecantos PA; Aon MA
    Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle and growth regulation in RAS2 mutant cells of Saccharomyces cerevisiae.
    Baroni MD; Marconi G; Monti P; Alberghina L
    Ital J Biochem; 1993; 42(6):373-87. PubMed ID: 8144346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions.
    Cipollina C; Alberghina L; Porro D; Vai M
    Yeast; 2005 Apr; 22(5):385-99. PubMed ID: 15806610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae.
    McNulty JJ; Lew DJ
    Curr Biol; 2005 Dec; 15(24):2190-8. PubMed ID: 16360682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of origin recognition complex in saccharomyces cerevisiae by use of Degron mutants.
    Makise M; Matsui N; Yamairi F; Takahashi N; Takehara M; Asano T; Mizushima T
    J Biochem; 2008 Apr; 143(4):455-65. PubMed ID: 18211918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae.
    Rivin CJ; Fangman WL
    J Cell Biol; 1980 Apr; 85(1):96-107. PubMed ID: 6988443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: a calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants.
    Ohya Y; Ohsumi Y; Anraku Y
    Mol Gen Genet; 1984; 193(3):389-94. PubMed ID: 6369073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages.
    Eilam Y; Chernichovsky D
    J Gen Microbiol; 1988 Apr; 134(4):1063-9. PubMed ID: 3053981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae.
    Sudbery PE; Goodey AR; Carter BL
    Nature; 1980 Nov; 288(5789):401-4. PubMed ID: 7001255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae.
    Dudani AK; Trivedi A; Prasad R
    FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle control by Ca2+ in Saccharomyces cerevisiae.
    Iida H; Sakaguchi S; Yagawa Y; Anraku Y
    J Biol Chem; 1990 Dec; 265(34):21216-22. PubMed ID: 2123488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.