BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33315225)

  • 1. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions.
    Goldstein M; Goodey NM
    Methods Mol Biol; 2021; 2253():185-219. PubMed ID: 33315225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated motion and the effect of distal mutations in dihydrofolate reductase.
    Rod TH; Radkiewicz JL; Brooks CL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6980-5. PubMed ID: 12756296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase.
    Arora K; Brooks CL
    Top Curr Chem; 2013; 337():165-87. PubMed ID: 23420416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Wong KF; Selzer T; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6807-12. PubMed ID: 15811945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, dynamics, and catalytic function of dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Annu Rev Biophys Biomol Struct; 2004; 33():119-40. PubMed ID: 15139807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the crossover helix impairs dihydrofolate reductase activity in the bifunctional enzyme TS-DHFR from Cryptosporidium hominis.
    Vargo MA; Martucci WE; Anderson KS
    Biochem J; 2009 Feb; 417(3):757-64. PubMed ID: 18851711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hydride transfer and cofactor fluorescence decay in mutants of dihydrofolate reductase: possible evidence for participation of enzyme molecular motions in catalysis.
    Farnum MF; Magde D; Howell EE; Hirai JT; Warren MS; Grimsley JK; Kraut J
    Biochemistry; 1991 Dec; 30(49):11567-79. PubMed ID: 1747376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network of coupled promoting motions in enzyme catalysis.
    Agarwal PK; Billeter SR; Rajagopalan PT; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2794-9. PubMed ID: 11867722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution.
    Alotaibi M; Reyes BD; Le T; Luong P; Valafar F; Metzger RP; Fogel GB; Hecht D
    J Mol Graph Model; 2017 Jan; 71():135-153. PubMed ID: 27914300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of parasite-specific, distant structural regions on communication and catalysis in the bifunctional thymidylate synthase-dihydrofolate reductase from Plasmodium falciparum.
    Dasgupta T; Anderson KS
    Biochemistry; 2008 Feb; 47(5):1336-45. PubMed ID: 18189414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A glutamine 67--> histidine mutation in homotetrameric R67 dihydrofolate reductase results in four mutations per single active site pore and causes substantial substrate and cofactor inhibition.
    Park H; Bradrick TD; Howell EE
    Protein Eng; 1997 Dec; 10(12):1415-24. PubMed ID: 9543003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and structural characterization of dihydrofolate reductase from Streptococcus pneumoniae.
    Lee J; Yennawar NH; Gam J; Benkovic SJ
    Biochemistry; 2010 Jan; 49(1):195-206. PubMed ID: 19950924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of protein dynamics in dihydrofolate reductase evolution.
    Francis K; Stojkovic V; Kohen A
    J Biol Chem; 2013 Dec; 288(50):35961-8. PubMed ID: 24158440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.