These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33315302)

  • 41. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
    Terns MP
    Mol Cell; 2018 Nov; 72(3):404-412. PubMed ID: 30388409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures.
    Dutt M; Mou Z; Zhang X; Tanwir SE; Grosser JW
    BMC Biotechnol; 2020 Nov; 20(1):58. PubMed ID: 33167938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
    Paix A; Folkmann A; Seydoux G
    Methods; 2017 May; 121-122():86-93. PubMed ID: 28392263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas9-Mediated Genome Editing in Epstein-Barr Virus-Transformed Lymphoblastoid B-Cell Lines.
    Jiang S; Wang LW; Walsh MJ; Trudeau SJ; Gerdt C; Zhao B; Gewurz BE
    Curr Protoc Mol Biol; 2018 Jan; 121():31.12.1-31.12.23. PubMed ID: 29337376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly.
    Sahoo N; Cuello V; Udawant S; Litif C; Mustard JA; Keniry M
    Methods Mol Biol; 2020; 2115():365-383. PubMed ID: 32006411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9.
    Li R; Char SN; Yang B
    Methods Mol Biol; 2019; 1917():47-61. PubMed ID: 30610627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient Editing of the Nuclear
    Guzmán-Zapata D; Sandoval-Vargas JM; Macedo-Osorio KS; Salgado-Manjarrez E; Castrejón-Flores JL; Oliver-Salvador MDC; Durán-Figueroa NV; Nogué F; Badillo-Corona JA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient CRISPR-mediated base editing in
    Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212
    [No Abstract]   [Full Text] [Related]  

  • 59. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.