These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33315405)

  • 1. Dynamics of DNA Clogging in Hafnium Oxide Nanopores.
    Li S; Zeng S; Wen C; Barbe L; Tenje M; Zhang Z; Hjort K; Zhang SL
    J Phys Chem B; 2020 Dec; 124(51):11573-11583. PubMed ID: 33315405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations.
    H H; Mallajosyula SS
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55095-55108. PubMed ID: 37965826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow DNA transport through nanopores in hafnium oxide membranes.
    Larkin J; Henley R; Bell DC; Cohen-Karni T; Rosenstein JK; Wanunu M
    ACS Nano; 2013 Nov; 7(11):10121-10128. PubMed ID: 24083444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications.
    Shim J; Rivera JA; Bashir R
    Nanoscale; 2013 Nov; 5(22):10887-93. PubMed ID: 23945603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directly observing the motion of DNA molecules near solid-state nanopores.
    Ando G; Hyun C; Li J; Mitsui T
    ACS Nano; 2012 Nov; 6(11):10090-7. PubMed ID: 23046052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
    Chou YC; Masih Das P; Monos DS; Drndić M
    ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking and Activity of DNA Polymerase on Solid-State Nanopores.
    Li S; Zeng S; Wen C; Zhang Z; Hjort K; Zhang SL
    ACS Sens; 2022 May; 7(5):1476-1483. PubMed ID: 35537188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Tunable Quenching of DNA Fluctuations in Biased Solid-State Nanopores.
    Qiu H; Girdhar A; Schulten K; Leburton JP
    ACS Nano; 2016 Apr; 10(4):4482-8. PubMed ID: 26998639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
    Di Fiori N; Squires A; Bar D; Gilboa T; Moustakas TD; Meller A
    Nat Nanotechnol; 2013 Dec; 8(12):946-51. PubMed ID: 24185943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulley Effect in the Capture of DNA Translocation through Solid-State Nanopores.
    Chen S; He W; Li J; Xu D; Zhao R; Zhu L; Wu H; Xu F
    Langmuir; 2024 Mar; 40(11):5799-5808. PubMed ID: 38501264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage.
    Lin CY; Turker Acar E; Polster JW; Lin K; Hsu JP; Siwy ZS
    ACS Nano; 2019 Sep; 13(9):9868-9879. PubMed ID: 31348640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface coatings for solid-state nanopores.
    Eggenberger OM; Ying C; Mayer M
    Nanoscale; 2019 Nov; 11(42):19636-19657. PubMed ID: 31603455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-bandwidth protein analysis using solid-state nanopores.
    Larkin J; Henley RY; Muthukumar M; Rosenstein JK; Wanunu M
    Biophys J; 2014 Feb; 106(3):696-704. PubMed ID: 24507610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation.
    Schneider GF; Xu Q; Hage S; Luik S; Spoor JN; Malladi S; Zandbergen H; Dekker C
    Nat Commun; 2013; 4():2619. PubMed ID: 24126320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group Behavior of Nanoparticles Translocating Multiple Nanopores.
    Wen C; Zeng S; Zhang Z; Zhang SL
    Anal Chem; 2018 Nov; 90(22):13483-13490. PubMed ID: 30372031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.