These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33315454)

  • 1. Hohenberg-Mermin-Wagner-Type Theorems for Equilibrium Models of Flocking.
    Tasaki H
    Phys Rev Lett; 2020 Nov; 125(22):220601. PubMed ID: 33315454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Mermin-Wagner theorem for classical spin models on graphs.
    Burioni R; Cassi D; Vezzani A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):1500-2. PubMed ID: 11969909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous symmetry breaking of low-dimensional systems driven by inhomogeneous oscillatory driving forces.
    Ikeda H; Kuroda Y
    Phys Rev E; 2024 Aug; 110(2-1):024140. PubMed ID: 39295011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking.
    Griffin T; Grosvenor KT; Hořava P; Yan Z
    Phys Rev Lett; 2015 Dec; 115(24):241601. PubMed ID: 26705623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of Persistent Breaking of Discrete Symmetry.
    Chai N; Dymarsky A; Smolkin M
    Phys Rev Lett; 2022 Jan; 128(1):011601. PubMed ID: 35061483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O(N)-universality classes and the Mermin-Wagner theorem.
    Codello A; D'Odorico G
    Phys Rev Lett; 2013 Apr; 110(14):141601. PubMed ID: 25166978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking through the Mermin-Wagner limit in 2D van der Waals magnets.
    Jenkins S; Rózsa L; Atxitia U; Evans RFL; Novoselov KS; Santos EJG
    Nat Commun; 2022 Nov; 13(1):6917. PubMed ID: 36376290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum fluctuations inhibit symmetry breaking in the Hamiltonian mean-field model.
    Plestid R; Lambert J
    Phys Rev E; 2020 Jan; 101(1-1):012136. PubMed ID: 32069647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flocking with discrete symmetry: The two-dimensional active Ising model.
    Solon AP; Tailleur J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042119. PubMed ID: 26565180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Ising Models of flocking: a field-theoretic approach.
    Scandolo M; Pausch J; Cates ME
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):103. PubMed ID: 37882912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated noise and critical dimensions.
    Ikeda H
    Phys Rev E; 2023 Dec; 108(6-1):064119. PubMed ID: 38243493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signatures of irreversibility in microscopic models of flocking.
    Ferretti F; Grosse-Holz S; Holmes C; Shivers JL; Giardina I; Mora T; Walczak AM
    Phys Rev E; 2022 Sep; 106(3-1):034608. PubMed ID: 36266796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of spontaneous magnetic order at nonzero temperature in one- and two-dimensional Heisenberg and XY systems with long-range interactions.
    Bruno P
    Phys Rev Lett; 2001 Sep; 87(13):137203. PubMed ID: 11580623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective behavior of Vicsek particles without and with obstacles
    Martinez R; Alarcon F; Rodriguez DR; Aragones JL; Valeriani C
    Eur Phys J E Soft Matter; 2018 Aug; 41(8):91. PubMed ID: 30112662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model.
    Mangeat M; Chatterjee S; Paul R; Rieger H
    Phys Rev E; 2020 Oct; 102(4-1):042601. PubMed ID: 33212593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mermin-Wagner fluctuations in 2D amorphous solids.
    Illing B; Fritschi S; Kaiser H; Klix CL; Maret G; Keim P
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1856-1861. PubMed ID: 28137872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocking of two unfriendly species: The two-species Vicsek model.
    Chatterjee S; Mangeat M; Woo CU; Rieger H; Noh JD
    Phys Rev E; 2023 Feb; 107(2-1):024607. PubMed ID: 36932579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Crystals far from Equilibrium.
    Galliano L; Cates ME; Berthier L
    Phys Rev Lett; 2023 Jul; 131(4):047101. PubMed ID: 37566855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium fluctuation theorems in the presence of a time-reversal symmetry-breaking field and nonconservative forces.
    Pradhan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021122. PubMed ID: 20365545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations.
    Solon AP; Chaté H; Tailleur J
    Phys Rev Lett; 2015 Feb; 114(6):068101. PubMed ID: 25723246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.