These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 33315559)
1. Insights Into Algorithms for Separable Nonlinear Least Squares Problems. Chen GY; Gan M; Wang S; Chen CLP IEEE Trans Image Process; 2021; 30():1207-1218. PubMed ID: 33315559 [TBL] [Abstract][Full Text] [Related]
2. Modified Gram-Schmidt Method-Based Variable Projection Algorithm for Separable Nonlinear Models. Chen GY; Gan M; Ding F; Chen CLP IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2410-2418. PubMed ID: 30596588 [TBL] [Abstract][Full Text] [Related]
3. Training two-layered feedforward networks with variable projection method. Kim CT; Lee JJ IEEE Trans Neural Netw; 2008 Feb; 19(2):371-5. PubMed ID: 18269969 [TBL] [Abstract][Full Text] [Related]
4. On Some Separated Algorithms for Separable Nonlinear Least Squares Problems. Min Gan ; Chen CLP; Guang-Yong Chen ; Long Chen IEEE Trans Cybern; 2018 Oct; 48(10):2866-2874. PubMed ID: 28981436 [TBL] [Abstract][Full Text] [Related]
5. A Note on the Connection Between Trek Rules and Separable Nonlinear Least Squares in Linear Structural Equation Models. Ernst MS; Peikert A; Brandmaier AM; Rosseel Y Psychometrika; 2023 Mar; 88(1):98-116. PubMed ID: 36566451 [TBL] [Abstract][Full Text] [Related]
6. A variable projection approach for efficient estimation of RBF-ARX model. Gan M; Li HX; Peng H IEEE Trans Cybern; 2015 Mar; 45(3):476-85. PubMed ID: 24988599 [TBL] [Abstract][Full Text] [Related]
7. Recursive Variable Projection Algorithm for a Class of Separable Nonlinear Models. Gan M; Guan Y; Chen GY; Chen CLP IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):4971-4982. PubMed ID: 33017297 [TBL] [Abstract][Full Text] [Related]
8. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models. Kadrmas DJ; Oktay MB Med Phys; 2013 Jul; 40(7):072502. PubMed ID: 23822451 [TBL] [Abstract][Full Text] [Related]
9. A Regularized SNPOM for Stable Parameter Estimation of RBF-AR(X) Model. Zeng X; Peng H; Zhou F IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):779-791. PubMed ID: 28113350 [TBL] [Abstract][Full Text] [Related]
11. Online Identification of Nonlinear Systems With Separable Structure. Chen GY; Gan M; Chen L; Chen CLP IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8695-8701. PubMed ID: 36327182 [TBL] [Abstract][Full Text] [Related]
12. An efficient variable projection formulation for separable nonlinear least squares problems. Gan M; Li HX IEEE Trans Cybern; 2014 May; 44(5):707-11. PubMed ID: 23846514 [TBL] [Abstract][Full Text] [Related]
13. Separable least squares identification of nonlinear Hammerstein models: application to stretch reflex dynamics. Westwick DT; Kearney RE Ann Biomed Eng; 2001 Aug; 29(8):707-18. PubMed ID: 11556727 [TBL] [Abstract][Full Text] [Related]
14. Alternative structured spectral gradient algorithms for solving nonlinear least-squares problems. Yahaya MM; Kumam P; Awwal AM; Aji S Heliyon; 2021 Jul; 7(7):e07499. PubMed ID: 34345725 [TBL] [Abstract][Full Text] [Related]
15. An efficient learning algorithm for improving generalization performance of radial basis function neural networks. Wang ZO; Zhu T Neural Netw; 2000; 13(4-5):545-53. PubMed ID: 10946399 [TBL] [Abstract][Full Text] [Related]
16. A parameter optimization method for radial basis function type models. Peng H; Ozaki T; Haggan-Ozaki V; Toyoda Y IEEE Trans Neural Netw; 2003; 14(2):432-8. PubMed ID: 18238025 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps. Angelis GI; Matthews JC; Kotasidis FA; Markiewicz PJ; Lionheart WR; Reader AJ Ann Nucl Med; 2014 Nov; 28(9):860-73. PubMed ID: 25073760 [TBL] [Abstract][Full Text] [Related]
19. A fast algorithm for AR parameter estimation using a novel noise-constrained least-squares method. Xia Y; Kamel MS; Leung H Neural Netw; 2010 Apr; 23(3):396-405. PubMed ID: 20005072 [TBL] [Abstract][Full Text] [Related]
20. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT. Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]