BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33315722)

  • 1. n - 3 Docosapentaenoic acid: the iceberg n - 3 fatty acid.
    Ghasemi Fard S; Cameron-Smith D; Sinclair AJ
    Curr Opin Clin Nutr Metab Care; 2021 Mar; 24(2):134-138. PubMed ID: 33315722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.
    Markworth JF; Kaur G; Miller EG; Larsen AE; Sinclair AJ; Maddipati KR; Cameron-Smith D
    FASEB J; 2016 Nov; 30(11):3714-3725. PubMed ID: 27461565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition.
    Drouin G; Catheline D; Guillocheau E; Gueret P; Baudry C; Le Ruyet P; Rioux V; Legrand P
    J Nutr Biochem; 2019 Jan; 63():186-196. PubMed ID: 30412907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell.
    Weylandt KH
    Eur J Pharmacol; 2016 Aug; 785():108-115. PubMed ID: 26546723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family.
    Drouin G; Rioux V; Legrand P
    Biochimie; 2019 Apr; 159():36-48. PubMed ID: 30716358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. n-3 Docosapentaenoic Acid Intake and Relationship with Plasma Long-Chain n-3 Fatty Acid Concentrations in the United States: NHANES 2003-2014.
    Richter CK; Bisselou KS; Nordgren TM; Smith L; Appiah AK; Hein N; Anderson-Berry A; Kris-Etherton P; Hanson C; Skulas-Ray AC
    Lipids; 2019 Apr; 54(4):221-230. PubMed ID: 31025717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro ruminal biohydrogenation of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acid (DHA) in cows and ewes: Intermediate metabolites and pathways.
    Toral PG; Hervás G; Leskinen H; Shingfield KJ; Frutos P
    J Dairy Sci; 2018 Jul; 101(7):6109-6121. PubMed ID: 29705425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study.
    Guo XF; Tong WF; Ruan Y; Sinclair AJ; Li D
    Prostaglandins Leukot Essent Fatty Acids; 2020 Jul; 158():102033. PubMed ID: 31740197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A short-term n-3 DPA supplementation study in humans.
    Miller E; Kaur G; Larsen A; Loh SP; Linderborg K; Weisinger HS; Turchini GM; Cameron-Smith D; Sinclair AJ
    Eur J Nutr; 2013 Apr; 52(3):895-904. PubMed ID: 22729967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-3 Fatty acid supplementation and proresolving mediators of inflammation.
    Barden AE; Mas E; Mori TA
    Curr Opin Lipidol; 2016 Feb; 27(1):26-32. PubMed ID: 26655290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprocess engineering to produce essential polyunsaturated fatty acids from Thraustochytrium sp.
    Chauhan AS; Chen CW; Tambat VS; Singhania RR; Chang JS; Dong CD; Patel AK
    Bioresour Technol; 2023 Sep; 383():129209. PubMed ID: 37230331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diets enriched in menhaden fish oil, seal oil, or shark liver oil have distinct effects on the lipid and fatty-acid composition of guinea pig heart.
    Murphy MG; Wright V; Ackman RG; Horackova M
    Mol Cell Biochem; 1997 Dec; 177(1-2):257-69. PubMed ID: 9450671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation.
    Skulas-Ray AC; Flock MR; Richter CK; Harris WS; West SG; Kris-Etherton PM
    Nutrients; 2015 Aug; 7(8):6390-404. PubMed ID: 26247967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA.
    Leng X; Kinnun JJ; Cavazos AT; Canner SW; Shaikh SR; Feller SE; Wassall SR
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1125-1134. PubMed ID: 29305832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice.
    Guo XF; Sinclair AJ; Kaur G; Li D
    Prostaglandins Leukot Essent Fatty Acids; 2018 Sep; 136():47-55. PubMed ID: 29113747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the association between whole blood Omega-3 Index, DHA, EPA, DHA, AA and n-6 DPA, and depression and self-esteem in adolescents of lower general secondary education.
    van der Wurff ISM; von Schacky C; Bergeland T; Leontjevas R; Zeegers MP; Kirschner PA; de Groot RHM
    Eur J Nutr; 2019 Jun; 58(4):1429-1439. PubMed ID: 29549496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Head-to-Head Comparison of a Free Fatty Acid Formulation of Omega-3 Pentaenoic Acids Versus Icosapent Ethyl in Adults With Hypertriglyceridemia: The ENHANCE-IT Study.
    Maki KC; Bays HE; Ballantyne CM; Underberg JA; Kastelein JJP; Johnson JB; Ferguson JJ
    J Am Heart Assoc; 2022 Mar; 11(6):e024176. PubMed ID: 35232215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.
    Dyall SC
    Front Aging Neurosci; 2015; 7():52. PubMed ID: 25954194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term docosapentaenoic acid (22:5 n-3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats.
    Kaur G; Begg DP; Barr D; Garg M; Cameron-Smith D; Sinclair AJ
    Br J Nutr; 2010 Jan; 103(1):32-7. PubMed ID: 19650956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes.
    Toral PG; Hervás G; Carreño D; Leskinen H; Belenguer A; Shingfield KJ; Frutos P
    J Dairy Sci; 2017 Aug; 100(8):6187-6198. PubMed ID: 28601459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.