These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33315731)
41. Predicted Refraction Variability Due to Reliability of Nine Optical Biometers for Intraocular Lens Power Calculation. Rocha-de-Lossada C; Rodríguez-Vallejo M; Rachwani-Anil R; Burguera N; Fernández J J Refract Surg; 2022 Feb; 38(2):120-127. PubMed ID: 35156457 [TBL] [Abstract][Full Text] [Related]
42. Comparative analysis of two optical biometry devices: high wavelength swept source OCT versus partial coherence interferometry. Szalai E; Csutak A Int Ophthalmol; 2022 Feb; 42(2):627-634. PubMed ID: 34633606 [TBL] [Abstract][Full Text] [Related]
43. Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography. Ferrer-Blasco T; Esteve-Taboada JJ; Monsálvez-Romín D; Aloy MA; Adsuara JE; Cerdá-Durán P; Montés-Micó R Int Ophthalmol; 2019 Feb; 39(2):303-310. PubMed ID: 29260498 [TBL] [Abstract][Full Text] [Related]
44. Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. Yang CM; Lim DH; Kim HJ; Chung TY PLoS One; 2019; 14(10):e0223114. PubMed ID: 31603903 [TBL] [Abstract][Full Text] [Related]
45. Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer. Muzyka-Woźniak M; Oleszko A Int Ophthalmol; 2019 May; 39(5):1115-1122. PubMed ID: 29700651 [TBL] [Abstract][Full Text] [Related]
46. Biometry and intraocular power calculation using a swept-source optical coherence tomography: A repeatability and agreement study. Hashemi H; Miraftab M; Panahi P; Asgari S Indian J Ophthalmol; 2022 Aug; 70(8):2845-2850. PubMed ID: 35918927 [TBL] [Abstract][Full Text] [Related]
47. Comparison of Ocular Biometry and Refractive Outcomes Using IOL Master 500, IOL Master 700, and Lenstar LS900. Song JS; Yoon DY; Hyon JY; Jeon HS Korean J Ophthalmol; 2020 Apr; 34(2):126-132. PubMed ID: 32233146 [TBL] [Abstract][Full Text] [Related]
48. Comparison of a new swept-source optical biometer with a partial coherence interferometry. Lee HK; Kim MK BMC Ophthalmol; 2018 Oct; 18(1):269. PubMed ID: 30340561 [TBL] [Abstract][Full Text] [Related]
49. Comparison of a new optical biometry with an optical low-coherence reflectometry for ocular biometry. Güler E; Kulak AE; Totan Y; Yuvarlak A; Hepşen İF Cont Lens Anterior Eye; 2016 Oct; 39(5):336-41. PubMed ID: 27344235 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of the repeatability of optical coherence tomography in patients with age-related cataract associated with dry eye. Yang F; Chang Y; Yang L; Jia Z; Liu J; Wang Y Int Ophthalmol; 2023 Jan; 43(1):233-238. PubMed ID: 35867312 [TBL] [Abstract][Full Text] [Related]
51. Horizontal and anterior chamber diameter for phakic intraocular lens sizing. Oleszko AA; Marek JJ; Muzyka-Woźniak MM Clin Exp Optom; 2021 Jan; 104(1):62-68. PubMed ID: 32519362 [TBL] [Abstract][Full Text] [Related]
52. The repeatability and agreement of biometric measurements by dual Scheimpflug device with integrated optical biometer. Hashemi H; Sardari S; Yekta A; Khabazkhoob M Sci Rep; 2022 May; 12(1):7748. PubMed ID: 35546610 [TBL] [Abstract][Full Text] [Related]
53. EFFECT OF PHARMACOLOGICAL PUPIL DILATION ON INTRAOCULAR LENS POWER CALCULATION IN PATIENTS INDICATED FOR CATARACT SURGERY. Autrata D; Chrapek O; Drahorád S Cesk Slov Oftalmol; 2021; 77(4):192-200. PubMed ID: 34507495 [TBL] [Abstract][Full Text] [Related]
54. Agreement Between Two Optical Biometers Based on Large Coherence Length SS-OCT and Scheimpflug Imaging/Partial Coherence Interferometry. Tu R; Yu J; Savini G; Ye J; Ning R; Xiong J; Chen S; Huang J J Refract Surg; 2020 Jul; 36(7):459-465. PubMed ID: 32644168 [TBL] [Abstract][Full Text] [Related]
55. Axial length acquisition success rates and agreement of two swept-source optical biometers in eyes with dense cataracts. Orts-Vila P; Tañá-Sanz S; Tello-Elordi C; Montés-Micó R; Tañá-Rivero P Front Med (Lausanne); 2024; 11():1449867. PubMed ID: 39386744 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of ocular biometry in primary angle-closure disease with two swept source optical coherence tomography devices. Wanichwecharungruang B; Amornpetchsathaporn A; Wongwijitsook W; Kongsomboon K; Chantra S PLoS One; 2022; 17(3):e0265844. PubMed ID: 35312733 [TBL] [Abstract][Full Text] [Related]
57. Agreement between the Swept-Source Optical Coherence Tomography and the Image-Guided System for Biometry Assessment in Cataract Surgery. Moreno-Páramo E; García-Arroyo S; Ortiz-Ramirez GY; Garza-León M; Gonzalez-Salinas R Semin Ophthalmol; 2022 Apr; 37(3):324-329. PubMed ID: 34402380 [TBL] [Abstract][Full Text] [Related]
58. Efficacy of Swept-source Optical Coherence Tomography in Axial Length Measurement for Advanced Cataract Patients. Chirapapaisan C; Srivannaboon S; Chonpimai P Optom Vis Sci; 2020 Mar; 97(3):186-191. PubMed ID: 32168241 [TBL] [Abstract][Full Text] [Related]
59. Repeatability of biometry measured by three devices and its impact on predicted intraocular lens power. Shetty N; Kaweri L; Koshy A; Shetty R; Nuijts RMMA; Sinha Roy A J Cataract Refract Surg; 2021 May; 47(5):585-592. PubMed ID: 33252565 [TBL] [Abstract][Full Text] [Related]
60. Effect of contact lenses on ocular biometric measurements based on swept-source optical coherence tomography. Ferrer-Blasco T; Esteve-Taboada JJ; Domínguez-Vicent A; Aloy MA; Adsuara JE; Mimica P; Montés-Micó R Arq Bras Oftalmol; 2019; 82(2):129-135. PubMed ID: 30726404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]