These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33315858)
1. A joint modeling approach for longitudinal microbiome data improves ability to detect microbiome associations with disease. Luna PN; Mansbach JM; Shaw CA PLoS Comput Biol; 2020 Dec; 16(12):e1008473. PubMed ID: 33315858 [TBL] [Abstract][Full Text] [Related]
2. Joint modeling of zero-inflated longitudinal proportions and time-to-event data with application to a gut microbiome study. Hu J; Wang C; Blaser MJ; Li H Biometrics; 2022 Dec; 78(4):1686-1698. PubMed ID: 34213763 [TBL] [Abstract][Full Text] [Related]
3. MIDASim: a fast and simple simulator for realistic microbiome data. He M; Zhao N; Satten GA Microbiome; 2024 Jul; 12(1):135. PubMed ID: 39039570 [TBL] [Abstract][Full Text] [Related]
4. Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data. Zhang X; Guo B; Yi N PLoS One; 2020; 15(11):e0242073. PubMed ID: 33166356 [TBL] [Abstract][Full Text] [Related]
5. Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations. Sun H; Huang X; Huo B; Tan Y; He T; Jiang X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561307 [TBL] [Abstract][Full Text] [Related]
6. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Chen EZ; Li H Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200 [TBL] [Abstract][Full Text] [Related]
7. Negative binomial factor regression with application to microbiome data analysis. Mishra AK; Müller CL Stat Med; 2022 Jul; 41(15):2786-2803. PubMed ID: 35466418 [TBL] [Abstract][Full Text] [Related]
8. Modeling biomarker variability in joint analysis of longitudinal and time-to-event data. Wang C; Shen J; Charalambous C; Pan J Biostatistics; 2024 Apr; 25(2):577-596. PubMed ID: 37230468 [TBL] [Abstract][Full Text] [Related]
9. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data. Wang C; Hu J; Blaser MJ; Li H Bioinformatics; 2020 Jan; 36(2):347-355. PubMed ID: 31329243 [TBL] [Abstract][Full Text] [Related]
10. Investigation of one-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application. Sudell M; Kolamunnage-Dona R; Gueyffier F; Tudur Smith C Stat Med; 2019 Jan; 38(2):247-268. PubMed ID: 30209815 [TBL] [Abstract][Full Text] [Related]
11. Multivariate joint modeling to identify markers of growth and lung function decline that predict cystic fibrosis pulmonary exacerbation onset. Andrinopoulou ER; Clancy JP; Szczesniak RD BMC Pulm Med; 2020 May; 20(1):142. PubMed ID: 32429862 [TBL] [Abstract][Full Text] [Related]
12. Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study. Ngwa JS; Cabral HJ; Cheng DM; Gagnon DR; LaValley MP; Cupples LA BMC Med Res Methodol; 2021 Feb; 21(1):29. PubMed ID: 33568059 [TBL] [Abstract][Full Text] [Related]
13. Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates. Tapsoba Jde D; Lee SM; Wang CY Stat Med; 2011 Feb; 30(3):232-49. PubMed ID: 21213341 [TBL] [Abstract][Full Text] [Related]
14. A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data. Jiang S; Xiao G; Koh AY; Kim J; Li Q; Zhan X Biostatistics; 2021 Jul; 22(3):522-540. PubMed ID: 31844880 [TBL] [Abstract][Full Text] [Related]
15. Joint model robustness compared with the time-varying covariate Cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. Arisido MW; Antolini L; Bernasconi DP; Valsecchi MG; Rebora P BMC Med Res Methodol; 2019 Dec; 19(1):222. PubMed ID: 31795933 [TBL] [Abstract][Full Text] [Related]
16. A semiparametric joint model for longitudinal and survival data with application to hemodialysis study. Li L; Hu B; Greene T Biometrics; 2009 Sep; 65(3):737-45. PubMed ID: 19173700 [TBL] [Abstract][Full Text] [Related]
17. Efficient and Accurate Inference of Mixed Microbial Population Trajectories from Longitudinal Count Data. Joseph TA; Pasarkar AP; Pe'er I Cell Syst; 2020 Jun; 10(6):463-469.e6. PubMed ID: 32684275 [TBL] [Abstract][Full Text] [Related]
18. NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. Zhang X; Yi N BMC Bioinformatics; 2020 Oct; 21(1):488. PubMed ID: 33126862 [TBL] [Abstract][Full Text] [Related]
19. Microbial trend analysis for common dynamic trend, group comparison, and classification in longitudinal microbiome study. Wang C; Hu J; Blaser MJ; Li H BMC Genomics; 2021 Sep; 22(1):667. PubMed ID: 34525957 [TBL] [Abstract][Full Text] [Related]
20. Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data. Zhang X; Pei YF; Zhang L; Guo B; Pendegraft AH; Zhuang W; Yi N Front Microbiol; 2018; 9():1683. PubMed ID: 30093893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]