These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33315892)

  • 21. Highly 4-aminopyridine sensitive delayed rectifier current modulates the excitability of guinea pig cerebellar Purkinje cells.
    Etzion Y; Grossman Y
    Exp Brain Res; 2001 Aug; 139(4):419-25. PubMed ID: 11534865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional roles of an ERG current isolated in cerebellar Purkinje neurons.
    Sacco T; Bruno A; Wanke E; Tempia F
    J Neurophysiol; 2003 Sep; 90(3):1817-28. PubMed ID: 12750425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism.
    D'Angelo E; Nieus T; Maffei A; Armano S; Rossi P; Taglietti V; Fontana A; Naldi G
    J Neurosci; 2001 Feb; 21(3):759-70. PubMed ID: 11157062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
    Raman IM; Bean BP
    J Neurosci; 1999 Mar; 19(5):1663-74. PubMed ID: 10024353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):375-400. PubMed ID: 7512629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells.
    Grasselli G; He Q; Wan V; Adelman JP; Ohtsuki G; Hansel C
    Cell Rep; 2016 Mar; 14(11):2546-53. PubMed ID: 26972012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
    Golomb D; Yue C; Yaari Y
    J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jittery trains induced by synaptic-like currents in cerebellar inhibitory interneurons.
    Mann-Metzer P; Yarom Y
    J Neurophysiol; 2002 Jan; 87(1):149-56. PubMed ID: 11784737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.
    Liu Y; Savtchouk I; Acharjee S; Liu SJ
    J Neurophysiol; 2011 Jul; 106(1):144-52. PubMed ID: 21562198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillatory bursting of phasically firing rat supraoptic neurones in low-Ca2+ medium: Na+ influx, cytosolic Ca2+ and gap junctions.
    Li Z; Hatton GI
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):379-94. PubMed ID: 8910223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic currents in single smooth muscle cells from the ureter of the guinea-pig.
    Imaizumi Y; Muraki K; Watanabe M
    J Physiol; 1989 Apr; 411():131-59. PubMed ID: 2482352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation properties of human recombinant class E calcium channels.
    Jouvenceau A; Giovannini F; Bath CP; Trotman E; Sher E
    J Neurophysiol; 2000 Feb; 83(2):671-84. PubMed ID: 10669483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental changes in calcium conductances contribute to the physiological maturation of cerebellar Purkinje neurons in culture.
    Gruol DL; Deal CR; Yool AJ
    J Neurosci; 1992 Jul; 12(7):2838-48. PubMed ID: 1377238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons.
    Cingolani LA; Gymnopoulos M; Boccaccio A; Stocker M; Pedarzani P
    J Neurosci; 2002 Jun; 22(11):4456-67. PubMed ID: 12040053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons.
    LlinĂ¡s RR; Alonso A
    J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.