BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33315917)

  • 1. Registered report protocol: Quantitative analysis of septin Cdc10-associated proteome in Cryptococcus neoformans.
    Martinez Barrera S; Byrum S; Mackintosh SG; Kozubowski L
    PLoS One; 2020; 15(12):e0242381. PubMed ID: 33315917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the anillin-like protein in growth of Cryptococcus neoformans at human host temperature.
    Peng CA; Altamirano S; Paladugu N; Crowe LP; Aboobakar IF; Chandrasekaran S; Kozubowski L
    Fungal Genet Biol; 2022 May; 160():103697. PubMed ID: 35472450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans.
    Kozubowski L; Heitman J
    Mol Microbiol; 2010 Feb; 75(3):658-75. PubMed ID: 19943902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast.
    Johnson CR; Steingesser MG; Weems AD; Khan A; Gladfelter A; Bertin A; McMurray MA
    Elife; 2020 Jan; 9():. PubMed ID: 31990274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blastomyces dermatitidis septins CDC3, CDC10, and CDC12 impact the morphology of yeast and hyphae, but are not required for the phase transition.
    Marty AJ; Gauthier GM
    Med Mycol; 2013 Jan; 51(1):93-102. PubMed ID: 22783804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization.
    Bertin A; McMurray MA; Thai L; Garcia G; Votin V; Grob P; Allyn T; Thorner J; Nogales E
    J Mol Biol; 2010 Dec; 404(4):711-31. PubMed ID: 20951708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic contribution to high temperature tolerance in Cryptococcus neoformans.
    Stempinski PR; Zielinski JM; Dbouk NH; Huey ES; McCormack EC; Rubin AM; Chandrasekaran S; Kozubowski L
    Genetics; 2021 Mar; 217(1):1-15. PubMed ID: 33683363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing.
    Marquardt J; Yao LL; Okada H; Svitkina T; Bi E
    Curr Biol; 2020 Jun; 30(12):2386-2394.e4. PubMed ID: 32386534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae.
    Versele M; Gullbrand B; Shulewitz MJ; Cid VJ; Bahmanyar S; Chen RE; Barth P; Alber T; Thorner J
    Mol Biol Cell; 2004 Oct; 15(10):4568-83. PubMed ID: 15282341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Septin filament formation is essential in budding yeast.
    McMurray MA; Bertin A; Garcia G; Lam L; Nogales E; Thorner J
    Dev Cell; 2011 Apr; 20(4):540-9. PubMed ID: 21497764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.
    Wu H; Guo J; Zhou YT; Gao XD
    Eukaryot Cell; 2015 Mar; 14(3):241-51. PubMed ID: 25576483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient protocol for the purification and labeling of entire yeast septin rods from E.coli for quantitative in vitro experimentation.
    Renz C; Johnsson N; Gronemeyer T
    BMC Biotechnol; 2013 Jul; 13():60. PubMed ID: 23889817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Proteomic Profiling of Cryptococcus neoformans.
    Ball B; Geddes-McAlister J
    Curr Protoc Microbiol; 2019 Dec; 55(1):e94. PubMed ID: 31797572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The step-wise pathway of septin hetero-octamer assembly in budding yeast.
    Weems A; McMurray M
    Elife; 2017 May; 6():. PubMed ID: 28541184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ER Protein Translocation Channel Subunit Sbh1 Controls Virulence of Cryptococcus neoformans.
    Santiago-Tirado FH; Hurtaux T; Geddes-McAlister J; Nguyen D; Helms V; Doering TL; Römisch K
    mBio; 2023 Feb; 14(1):e0338422. PubMed ID: 36749043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septins are required for reproductive propagule development and virulence of the maize pathogen Cochliobolus heterostrophus.
    Zhang X; González JB; Turgeon BG
    Fungal Genet Biol; 2020 Feb; 135():103291. PubMed ID: 31698077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions.
    Ballou ER; Nichols CB; Miglia KJ; Kozubowski L; Alspaugh JA
    Mol Microbiol; 2010 Feb; 75(3):763-80. PubMed ID: 20025659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous co-overexpression of Saccharomyces cerevisiae septins Cdc3 and Cdc10 drives pervasive, phospholipid-, and tag-dependent plasma membrane localization.
    Benson A; McMurray M
    Cytoskeleton (Hoboken); 2023; 80(7-8):199-214. PubMed ID: 37098755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast.
    Wloka C; Nishihama R; Onishi M; Oh Y; Hanna J; Pringle JR; Krauss M; Bi E
    Biol Chem; 2011 Aug; 392(8-9):813-29. PubMed ID: 21824009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence.
    de Gontijo FA; Pascon RC; Fernandes L; Machado J; Alspaugh JA; Vallim MA
    Fungal Genet Biol; 2014 Sep; 70():12-23. PubMed ID: 25011011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.