These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33316118)

  • 1. Immobilized phosphate-binding protein can effectively discriminate against arsenate during phosphate adsorption and recovery.
    Venkiteshwaran K; Wells E; Mayer BK
    Water Environ Res; 2021 Aug; 93(8):1173-1178. PubMed ID: 33316118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics, Affinity, Thermodynamics, and Selectivity of Phosphate Removal Using Immobilized Phosphate-Binding Proteins.
    Venkiteshwaran K; Wells E; Mayer BK
    Environ Sci Technol; 2020 Sep; 54(17):10885-10894. PubMed ID: 32786572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate removal and recovery using immobilized phosphate binding proteins.
    Venkiteshwaran K; Pokhrel N; Hussein F; Antony E; Mayer BK
    Water Res X; 2018 Dec; 1():100003. PubMed ID: 31194063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fixed-bed column study of phosphate adsorption using immobilized phosphate-binding protein.
    Hussein FB; Mayer BK
    Chemosphere; 2022 May; 295():133908. PubMed ID: 35143858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of recalcitrant phosphorus compounds using the phosphate-selective binding-protein PstS.
    Mallick SP; Hussein FB; Husted S; Mayer BK
    Chemosphere; 2022 Oct; 304():135311. PubMed ID: 35709849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption and desorption of arsenate, vanadate, and molybdate onto the low-cost adsorbent materials alum water treatment sludge and bauxite.
    Hua T; Haynes RJ; Zhou YF
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34053-34062. PubMed ID: 30280345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell surface-expression of the phosphate-binding protein PstS: System development, characterization, and evaluation for phosphorus removal and recovery.
    Hussein FB; Venkiteshwaran K; Mayer BK
    J Environ Sci (China); 2020 Jun; 92():129-140. PubMed ID: 32430116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-affinity phosphate-binding protein (PBP) for phosphorous recovery: proof of concept using recombinant Escherichia coli.
    Yang Y; Ballent W; Mayer BK
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27742716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of co-existing solutes on arsenate removal with hydrotalcite compound.
    Kiso Y; Jung YJ; Yamamoto H; Oguchi T; Kuzawa K; Yamada T; Kim SS; Ahn KH
    Water Sci Technol; 2010; 61(5):1183-8. PubMed ID: 20220240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent organic framework EB-COF:Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters.
    Yang CH; Chang JS; Lee DJ
    Chemosphere; 2020 Aug; 253():126736. PubMed ID: 32302910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber.
    Ruixia L; Jinlong G; Hongxiao T
    J Colloid Interface Sci; 2002 Apr; 248(2):268-74. PubMed ID: 16290531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced selective removal of arsenic(V) using a hybrid nanoscale zirconium molybdate embedded anion exchange resin.
    Bui TH; Hong SP; Yoon J
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37046-37053. PubMed ID: 31745776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens.
    Gonzalez D; Richez M; Bergonzi C; Chabriere E; Elias M
    Sci Rep; 2014 Oct; 4():6636. PubMed ID: 25338617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of phosphate discrimination in arsenate-rich environments.
    Elias M; Wellner A; Goldin-Azulay K; Chabriere E; Vorholt JA; Erb TJ; Tawfik DS
    Nature; 2012 Nov; 491(7422):134-7. PubMed ID: 23034649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended triple layer modeling of arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.
    Kanematsu M; Young TM; Fukushi K; Green PG; Darby JL
    Environ Sci Technol; 2010 May; 44(9):3388-94. PubMed ID: 20355701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.
    Li H; Ye Z; Lin Y; Wang F
    Water Sci Technol; 2012; 65(12):2091-7. PubMed ID: 22643401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite.
    Deng Y; Li Y; Li X; Sun Y; Ma J; Lei M; Weng L
    Chemosphere; 2018 May; 199():617-624. PubMed ID: 29459352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent.
    Zeng H; Fisher B; Giammar DE
    Environ Sci Technol; 2008 Jan; 42(1):147-52. PubMed ID: 18350889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.