BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33316270)

  • 1. A New Type of Circular RNA derived from Nonconventional Introns in Nuclear Genes of Euglenids.
    Gumińska N; Zakryś B; Milanowski R
    J Mol Biol; 2021 Feb; 433(3):166758. PubMed ID: 33316270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.
    Milanowski R; Karnkowska A; Ishikawa T; Zakryś B
    Mol Biol Evol; 2014 Mar; 31(3):584-93. PubMed ID: 24296662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate introns in nuclear genes of euglenids - are they a distinct type?
    Milanowski R; Gumińska N; Karnkowska A; Ishikawa T; Zakryś B
    BMC Evol Biol; 2016 Feb; 16():49. PubMed ID: 26923034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis.
    Gumińska N; Płecha M; Zakryś B; Milanowski R
    PLoS Genet; 2018 Oct; 14(10):e1007761. PubMed ID: 30365503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U1 small nuclear RNA and spliceosomal introns in Euglena gracilis.
    Breckenridge DG; Watanabe Y; Greenwood SJ; Gray MW; Schnare MN
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):852-6. PubMed ID: 9927657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique features of conventional and nonconventional introns in Euglena gracilis.
    Gao P; Zhao Y; Xu G; Zhong Y; Sun C
    BMC Genomics; 2024 Jun; 25(1):595. PubMed ID: 38872102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans-splicing and cis-splicing in the colourless Euglenoid, Entosiphon sulcatum.
    Ebel C; Frantz C; Paulus F; Imbault P
    Curr Genet; 1999 Jun; 35(5):542-50. PubMed ID: 10369962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a group I intron in the SSU rDNA of Ploeotia costata (Euglenozoa).
    Busse I; Preisfeld A
    Protist; 2003 Apr; 154(1):57-69. PubMed ID: 12812370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spliceosomal Introns: Features, Functions, and Evolution.
    Poverennaya IV; Roytberg MA
    Biochemistry (Mosc); 2020 Jul; 85(7):725-734. PubMed ID: 33040717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans.
    Hałakuc P; Karnkowska A; Milanowski R
    BMC Ecol Evol; 2022 May; 22(1):59. PubMed ID: 35534840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity.
    Odom OW; Shenkenberg DL; Garcia JA; Herrin DL
    RNA; 2004 Jul; 10(7):1097-107. PubMed ID: 15208445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences.
    Robic A; Demars J; Kühn C
    Cells; 2020 Jul; 9(8):. PubMed ID: 32751504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: introns and pre-mRNA maturation.
    Canaday J; Tessier LH; Imbault P; Paulus F
    Mol Genet Genomics; 2001 Mar; 265(1):153-60. PubMed ID: 11370862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis.
    Vanácová S; Yan W; Carlton JM; Johnson PJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4430-5. PubMed ID: 15764705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns.
    Zhang L; Jenkins KP; Stutz E; Hallick RB
    RNA; 1995 Dec; 1(10):1079-88. PubMed ID: 8595563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.