These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33316279)

  • 21. Discriminative stimulus effects of acute morphine followed by naltrexone in the squirrel monkey: a further characterization.
    White DA; Holtzman SG
    J Pharmacol Exp Ther; 2005 Jul; 314(1):374-82. PubMed ID: 15843500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation.
    Singleton PA; Lingen MW; Fekete MJ; Garcia JG; Moss J
    Microvasc Res; 2006; 72(1-2):3-11. PubMed ID: 16820176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial.
    Yuan CS; Foss JF; O'Connor M; Toledano A; Roizen MF; Moss J
    Clin Pharmacol Ther; 1996 Apr; 59(4):469-75. PubMed ID: 8612393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute thermal hyperalgesia elicited by low-dose morphine in normal mice is blocked by ultra-low-dose naltrexone, unmasking potent opioid analgesia.
    Crain SM; Shen KF
    Brain Res; 2001 Jan; 888(1):75-82. PubMed ID: 11146054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of methylnaltrexone, a peripheral opioid receptor antagonist, and its role in opioid-induced constipation.
    Shaiova L; Rim F; Friedman D; Jahdi M
    Palliat Support Care; 2007 Jun; 5(2):161-6. PubMed ID: 17578067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the antinociceptive effects of oxycodone in diabetic mice.
    Nozaki C; Saitoh A; Kamei J
    Eur J Pharmacol; 2006 Mar; 535(1-3):145-51. PubMed ID: 16533506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylnaltrexone antagonizes opioid-mediated enhancement of HIV infection of human blood mononuclear phagocytes.
    Ho WZ; Guo CJ; Yuan CS; Douglas SD; Moss J
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1158-62. PubMed ID: 14560041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of methylnaltrexone on guinea pig gastrointestinal motility.
    Anselmi L; Huynh J; Vegezzi G; Sternini C
    Naunyn Schmiedebergs Arch Pharmacol; 2013 Apr; 386(4):279-86. PubMed ID: 23361094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylnaltrexone Versus Naloxone for Opioid-Induced Constipation in the Medical Intensive Care Unit.
    Merchan C; Altshuler D; Papadopoulos J
    Ann Pharmacother; 2017 Mar; 51(3):203-208. PubMed ID: 28168885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of morphine and naltrexone on oral ethanol self-administration in rhesus monkeys.
    Williams KL; Kane EC; Woods JH
    Behav Pharmacol; 2001 Sep; 12(5):325-33. PubMed ID: 11710747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peripheral opioid receptors may mediate a portion of the aversive and depressant effect of EtOH: CPP and locomotor activity.
    Bedingfield JB; King DA; Holloway FA
    Alcohol; 1999; 18(2-3):93-101. PubMed ID: 10456559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylnaltrexone Progenics.
    De Ponti F
    Curr Opin Investig Drugs; 2002 Apr; 3(4):614-20. PubMed ID: 12090733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region.
    Drinovac Vlah V; Filipović B; Bach-Rojecky L; Lacković Z
    Eur J Pain; 2018 Mar; 22(3):583-591. PubMed ID: 29134730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute exposure to saccharin reduces morphine analgesia in the the rat: evidence for involvement of N-methyl-D-aspartate and peripheral opioid receptors.
    McNally GP; Westbrook RF
    Psychopharmacology (Berl); 2000 Mar; 149(1):56-62. PubMed ID: 10789883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of opioid receptor antagonists in the treatment of opioid-induced constipation: a review.
    Leppert W
    Adv Ther; 2010 Oct; 27(10):714-30. PubMed ID: 20799006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of methylnaltrexone on morphine-induced cough suppression in guinea pigs.
    Foss JF; Orelind E; Goldberg LI
    Life Sci; 1996; 59(15):PL235-8. PubMed ID: 8845013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methylnaltrexone prevents morphine-induced kaolin intake in the rat.
    Aung HH; Mehendale SR; Xie JT; Moss J; Yuan CS
    Life Sci; 2004 Apr; 74(22):2685-91. PubMed ID: 15043984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antagonism of heroin and morphine self-administration in rats by the morphine-6beta-glucuronide antagonist 3-O-methylnaltrexone.
    Walker JR; King M; Izzo E; Koob GF; Pasternak GW
    Eur J Pharmacol; 1999 Oct; 383(2):115-9. PubMed ID: 10585524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of methylnaltrexone and naloxone on esophageal motor function in man.
    Scarpellini E; Pauwels A; Vos R; Rommel N; Tack J
    Neurogastroenterol Motil; 2017 Mar; 29(3):. PubMed ID: 28110513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro evaluation of the effect of the opioid antagonist N-methylnaltrexone on motility of the equine jejunum and pelvic flexure.
    van Hoogmoed LM; Boscan PL
    Equine Vet J; 2005 Jul; 37(4):325-8. PubMed ID: 16028621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.