These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33316530)

  • 1. Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment.
    Min KJ; Kim JH; Park KY
    Sci Total Environ; 2021 Feb; 757():143762. PubMed ID: 33316530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions.
    Dermentzis KI; Davidis AE; Dermentzi AS; Chatzichristou CD
    Water Sci Technol; 2010; 62(8):1947-53. PubMed ID: 20962412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An empirical/theoretical model with dimensionless numbers to predict the performance of electrodialysis systems on the basis of operating conditions.
    Karimi L; Ghassemi A
    Water Res; 2016 Jul; 98():270-9. PubMed ID: 27108213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot-Scale Selective Electrodialysis for the Separation of Chloride and Sulphate from High-Salinity Wastewater.
    Li F; Guo Y; Wang S
    Membranes (Basel); 2022 Jun; 12(6):. PubMed ID: 35736317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot Demonstration of Reclaiming Municipal Wastewater for Irrigation Using Electrodialysis Reversal: Effect of Operational Parameters on Water Quality.
    Xu X; He Q; Ma G; Wang H; Nirmalakhandan N; Xu P
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33946493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Graphical Methods for Determination of the Limiting Current Density in Complex Electrodialysis-Feed Solutions.
    Knežević K; Reif D; Harasek M; Krampe J; Kreuzinger N
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the rejuvenation of spent electroless nickel baths by electrodialysis.
    Bolger PT; Szlag DC
    Environ Sci Technol; 2002 May; 36(10):2273-8. PubMed ID: 12038841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives.
    Gurreri L; Tamburini A; Cipollina A; Micale G
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32660014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data on ion-exchange membrane fouling by humic acid during electrodialysis.
    De Jaegher B; Larumbe E; De Schepper W; Verliefde A; Nopens I
    Data Brief; 2020 Aug; 31():105763. PubMed ID: 32490101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric Potential Profiles in a Model Single-Path Electrodialysis Unit.
    Pagáč J; Kovář P; Slouka Z
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization.
    Dermentzis K
    J Hazard Mater; 2010 Jan; 173(1-3):647-52. PubMed ID: 19766388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane.
    Chanda S; Tsai PA
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electrodialysis.
    Balcik-Canbolat C; Sengezer C; Sakar H; Karagunduz A; Keskinler B
    Environ Technol; 2020 Jan; 41(4):440-449. PubMed ID: 30010517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility studies on arsenic removal from aqueous solutions by electrodialysis.
    Mendoza RM; Kan CC; Chuang SS; Pingul-Ong SM; Dalida ML; Wan MW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(5):545-54. PubMed ID: 24410685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Membrane Technology for Acid Recovery from Wastewater in Coated Steel Wire Production: A Pilot Scale Study.
    Loza S; Loza N; Korzhov A; Romanyuk N; Kovalchuk N; Melnikov S
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of Chloride and Sulfate Ions from Desulfurization Wastewater Using Monovalent Anions Selective Electrodialysis.
    Tian X; Yue D; Hou T; Xiao F; Wang Z; Cai W
    Membranes (Basel); 2024 Mar; 14(4):. PubMed ID: 38668101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of dynamic current density for increased concentration factors and reduced energy consumption for concentrating ammonium by electrodialysis.
    van Linden N; Spanjers H; van Lier JB
    Water Res; 2019 Oct; 163():114856. PubMed ID: 31330400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-Scale Test Results of Electrodialysis Bipolar Membrane for Reverse-Osmosis Concentrate Recovery.
    Gazigil L; Er E; Kestioğlu OE; Yonar T
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.