These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33316695)

  • 1. Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life.
    Schaworonkow N; Voytek B
    Dev Cogn Neurosci; 2021 Feb; 47():100895. PubMed ID: 33316695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood.
    Hill AT; Clark GM; Bigelow FJ; Lum JAG; Enticott PG
    Dev Cogn Neurosci; 2022 Apr; 54():101076. PubMed ID: 35085871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity.
    Donoghue T; Dominguez J; Voytek B
    eNeuro; 2020; 7(6):. PubMed ID: 32978216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposing age effects in EEG alpha power.
    Tröndle M; Popov T; Pedroni A; Pfeiffer C; Barańczuk-Turska Z; Langer N
    Cortex; 2023 Apr; 161():116-144. PubMed ID: 36933455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood.
    McSweeney M; Morales S; Valadez EA; Buzzell GA; Yoder L; Fifer WP; Pini N; Shuffrey LC; Elliott AJ; Isler JR; Fox NA
    Neuroimage; 2023 Apr; 269():119925. PubMed ID: 36739102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aperiodic electrophysiological activity in preterm infants is linked to subsequent autism risk.
    Shuffrey LC; Pini N; Potter M; Springer P; Lucchini M; Rayport Y; Sania A; Firestein M; Brink L; Isler JR; Odendaal H; Fifer WP
    Dev Psychobiol; 2022 May; 64(4):e22271. PubMed ID: 35452546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of theta and alpha neural oscillations from ages 3 to 24 years.
    Cellier D; Riddle J; Petersen I; Hwang K
    Dev Cogn Neurosci; 2021 Aug; 50():100969. PubMed ID: 34174512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components.
    Leroy S; Major S; Bublitz V; Dreier JP; Koch S
    Front Aging Neurosci; 2022; 14():1076393. PubMed ID: 36742202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameterizing neural power spectra into periodic and aperiodic components.
    Donoghue T; Haller M; Peterson EJ; Varma P; Sebastian P; Gao R; Noto T; Lara AH; Wallis JD; Knight RT; Shestyuk A; Voytek B
    Nat Neurosci; 2020 Dec; 23(12):1655-1665. PubMed ID: 33230329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations.
    Gerster M; Waterstraat G; Litvak V; Lehnertz K; Schnitzler A; Florin E; Curio G; Nikulin V
    Neuroinformatics; 2022 Oct; 20(4):991-1012. PubMed ID: 35389160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposing the role of alpha oscillations during brain maturation.
    Tröndle M; Popov T; Dziemian S; Langer N
    Elife; 2022 Aug; 11():. PubMed ID: 36006005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic and GABAergic Receptor Modulation Present Unique Electrophysiological Fingerprints in a Concentration-Dependent and Region-Specific Manner.
    Gonzalez-Burgos I; Bainier M; Gross S; Schoenenberger P; Ochoa JA; Valencia M; Redondo RL
    eNeuro; 2023 Apr; 10(4):. PubMed ID: 36931729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to characterizing oscillatory burst detection algorithms for electrophysiological recordings.
    Chen Z; Headley DB; Gomez-Alatorre LF; Kanta V; Ho KC; Pare D; Nair SS
    J Neurosci Methods; 2023 May; 391():109865. PubMed ID: 37086753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separating the aperiodic and periodic components of neural activity in Parkinson's disease.
    Wang Z; Mo Y; Sun Y; Hu K; Peng C; Zhang S; Xue S
    Eur J Neurosci; 2022 Sep; 56(6):4889-4900. PubMed ID: 35848719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral slowing in chronic stroke reflects abnormalities in both periodic and aperiodic neural dynamics.
    Johnston PR; McIntosh AR; Meltzer JA
    Neuroimage Clin; 2023; 37():103277. PubMed ID: 36495856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha?
    Merkin A; Sghirripa S; Graetz L; Smith AE; Hordacre B; Harris R; Pitcher J; Semmler J; Rogasch NC; Goldsworthy M
    Neurobiol Aging; 2023 Jan; 121():78-87. PubMed ID: 36379095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical correlation structure of aperiodic neuronal population activity.
    Ibarra Chaoul A; Siegel M
    Neuroimage; 2021 Dec; 245():118672. PubMed ID: 34715318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic and aperiodic contributions to theta-beta ratios across adulthood.
    Finley AJ; Angus DJ; van Reekum CM; Davidson RJ; Schaefer SM
    Psychophysiology; 2022 Nov; 59(11):e14113. PubMed ID: 35751645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infant excitation/inhibition balance interacts with executive attention to predict autistic traits in childhood.
    Carter Leno V; Begum-Ali J; Goodwin A; Mason L; Pasco G; Pickles A; Garg S; Green J; Charman T; Johnson MH; Jones EJH; ;
    Mol Autism; 2022 Dec; 13(1):46. PubMed ID: 36482366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG.
    Schaworonkow N; Nikulin VV
    PLoS Comput Biol; 2019 May; 15(5):e1007055. PubMed ID: 31086368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.