These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33316998)

  • 1. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review.
    Kanngiesser J; Roth B
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33316998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Interferometer Design for Independent Wavefront Manipulation in Spectral Domain Optical Coherence Tomography.
    Kanngiesser J; Rahlves M; Roth B
    Sci Rep; 2019 Oct; 9(1):14651. PubMed ID: 31601904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography.
    Yu H; Lee P; Jo Y; Lee K; Tuchin VV; Jeong Y; Park Y
    J Biomed Opt; 2016 Dec; 21(12):121510. PubMed ID: 27792807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography.
    Jang J; Lim J; Yu H; Choi H; Ha J; Park JH; Oh WY; Jang W; Lee S; Park Y
    Opt Express; 2013 Feb; 21(3):2890-902. PubMed ID: 23481747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping.
    Yu H; Jang J; Lim J; Park JH; Jang W; Kim JY; Park Y
    Opt Express; 2014 Apr; 22(7):7514-23. PubMed ID: 24718125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
    Yu Z; Li H; Zhong T; Park JH; Cheng S; Woo CM; Zhao Q; Yao J; Zhou Y; Huang X; Pang W; Yoon H; Shen Y; Liu H; Zheng Y; Park Y; Wang LV; Lai P
    Innovation (Camb); 2022 Sep; 3(5):100292. PubMed ID: 36032195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping.
    Ruan H; Haber T; Liu Y; Brake J; Kim J; Berlin JM; Yang C
    Optica; 2017 Nov; 4(11):1337-1343. PubMed ID: 29623290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo deep tissue imaging using wavefront shaping optical coherence tomography.
    Yu H; Lee P; Lee K; Jang J; Lim J; Jang W; Jeong Y; Park Y
    J Biomed Opt; 2016 Oct; 21(10):101406. PubMed ID: 26895566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative wavefront correction for complex spectral domain optical coherence tomography.
    Kanngiesser J; Rahlves M; Roth B
    Opt Lett; 2019 Mar; 44(6):1347-1350. PubMed ID: 30874647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and applications of full-field optical coherence tomography: a review.
    Wang L; Fu R; Xu C; Xu M
    J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35596250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially offset optical coherence tomography: Leveraging multiple scattering for high-contrast imaging at depth in turbid media.
    Untracht GR; Chen M; Wijesinghe P; Mas J; Yura HT; Marti D; Andersen PE; Dholakia K
    Sci Adv; 2023 Jul; 9(27):eadh5435. PubMed ID: 37418534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping.
    Qiao Y; Peng Y; Zheng Y; Ye F; Chen X
    Opt Lett; 2017 May; 42(10):1895-1898. PubMed ID: 28504753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in optical imaging through deep tissue: imaging probes and techniques.
    Yoon S; Cheon SY; Park S; Lee D; Lee Y; Han S; Kim M; Koo H
    Biomater Res; 2022 Oct; 26(1):57. PubMed ID: 36273205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustics with coherent light.
    Bossy E; Gigan S
    Photoacoustics; 2016 Mar; 4(1):22-35. PubMed ID: 27069874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.