These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33316998)

  • 21. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography.
    Kanngiesser J; Roth B
    Opt Express; 2020 Jun; 28(12):18224-18240. PubMed ID: 32680023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance enhancement in wavefront shaping of multiply scattered light: a review.
    Li H; Yu Z; Zhong T; Lai P
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11512. PubMed ID: 38125718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Focusing Coherent Light through Volume Scattering Phantoms via Wavefront Shaping.
    Fritzsche N; Ott F; Pink K; Kienle A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
    Pircher M; Zawadzki RJ
    Biomed Opt Express; 2017 May; 8(5):2536-2562. PubMed ID: 28663890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-speed feedback based wavefront shaping for spatiotemporal enhancement of incoherent light through dynamic scattering media.
    Hsieh CM; Malik MOA; Liu Q
    Opt Lett; 2023 May; 48(9):2313-2316. PubMed ID: 37126262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.
    Polans J; Keller B; Carrasco-Zevallos OM; LaRocca F; Cole E; Whitson HE; Lad EM; Farsiu S; Izatt JA
    Biomed Opt Express; 2017 Jan; 8(1):16-37. PubMed ID: 28101398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local wavefront mapping in tissue using computational adaptive optics OCT.
    South FA; Liu YZ; Huang PC; Kohlfarber T; Boppart SA
    Opt Lett; 2019 Mar; 44(5):1186-1189. PubMed ID: 30821744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Full-field OCT].
    Dubois A; Boccara C
    Med Sci (Paris); 2006 Oct; 22(10):859-64. PubMed ID: 17026940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy.
    Liu S; Xia F; Yang X; Wu M; Bizimana LA; Xu C; Adie SG
    Biomed Opt Express; 2021 Aug; 12(8):4934-4954. PubMed ID: 34513234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue.
    Horstmeyer R; Ruan H; Yang C
    Nat Photonics; 2015; 9():563-571. PubMed ID: 27293480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavefront measurement using computational adaptive optics.
    South FA; Liu YZ; Bower AJ; Xu Y; Carney PS; Boppart SA
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):466-473. PubMed ID: 29522050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.
    Wang J; Léger JF; Binding J; Boccara AC; Gigan S; Bourdieu L
    Biomed Opt Express; 2012 Oct; 3(10):2510-25. PubMed ID: 23082292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.
    Feng BY; Guo H; Xie M; Boominathan V; Sharma MK; Veeraraghavan A; Metzler CA
    Sci Adv; 2023 Jun; 9(26):eadg4671. PubMed ID: 37379386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-polarization wavefront shaping for imaging through scattering media.
    Li R; Peng T; Zhou M; Yu X; Min J; Yang Y; Yao B
    Appl Opt; 2020 Jun; 59(17):5131-5135. PubMed ID: 32543531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Quantitative Model for Optical Coherence Tomography.
    Veselka L; Krainz L; Mindrinos L; Drexler W; Elbau P
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-depth polarisation resolved SHG microscopy in biological tissues using iterative wavefront optimisation.
    Nuzhdin D; Pendleton EG; Munger EB; Mortensen LJ; Brasselet S
    J Microsc; 2023 Jul; 291(1):57-72. PubMed ID: 36455264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography.
    Borycki D; Hamkało M; Nowakowski M; Szkulmowski M; Wojtkowski M
    Biomed Opt Express; 2019 Apr; 10(4):2032-2054. PubMed ID: 31086716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.