These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 33317287)
1. Electron transfer pathways from quantum dynamics simulations. Pedron FN; Issoglio F; Estrin DA; Scherlis DA J Chem Phys; 2020 Dec; 153(22):225102. PubMed ID: 33317287 [TBL] [Abstract][Full Text] [Related]
2. Kinetics, subcellular localization, and contribution to parasite virulence of a Hugo M; Martínez A; Trujillo M; Estrada D; Mastrogiovanni M; Linares E; Augusto O; Issoglio F; Zeida A; Estrín DA; Heijnen HF; Piacenza L; Radi R Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1326-E1335. PubMed ID: 28179568 [TBL] [Abstract][Full Text] [Related]
3. The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: Insights from quantum mechanical/molecular mechanics simulations. Bernini C; Pogni R; Basosi R; Sinicropi A Proteins; 2012 May; 80(5):1476-83. PubMed ID: 22383280 [TBL] [Abstract][Full Text] [Related]
4. Heme electron transfer in peroxidases: the propionate e-pathway. Guallar V J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the structure of a novel artificial heme-enzyme with peroxidase-like activity: A theoretical investigation. Perrella F; Raucci U; Chiariello MG; Chino M; Maglio O; Lombardi A; Rega N Biopolymers; 2018 Aug; 109(10):e23225. PubMed ID: 30091460 [TBL] [Abstract][Full Text] [Related]
6. Mapping protein electron transfer pathways with QM/MM methods. Guallar V; Wallrapp F J R Soc Interface; 2008 Dec; 5 Suppl 3(Suppl 3):S233-9. PubMed ID: 18445553 [TBL] [Abstract][Full Text] [Related]
7. Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site. Ivancich A; Jakopitsch C; Auer M; Un S; Obinger C J Am Chem Soc; 2003 Nov; 125(46):14093-102. PubMed ID: 14611246 [TBL] [Abstract][Full Text] [Related]
8. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations. Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126 [TBL] [Abstract][Full Text] [Related]
9. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
10. Quantum chemical calculations of tryptophan → heme electron and excitation energy transfer rates in myoglobin. Suess CJ; Hirst JD; Besley NA J Comput Chem; 2017 Jun; 38(17):1495-1502. PubMed ID: 28369976 [TBL] [Abstract][Full Text] [Related]
11. Theory Uncovers the Role of the Methionine-Tyrosine-Tryptophan Radical Adduct in the Catalase Reaction of KatGs: O Wang B; Fita I; Rovira C Chemistry; 2018 Apr; 24(20):5388-5395. PubMed ID: 29462509 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Consani C; Auböck G; van Mourik F; Chergui M Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092 [TBL] [Abstract][Full Text] [Related]
13. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core. Loewen PC; Carpena X; Vidossich P; Fita I; Rovira C J Am Chem Soc; 2014 May; 136(20):7249-52. PubMed ID: 24785434 [TBL] [Abstract][Full Text] [Related]
14. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c(4). Nazmutdinov RR; Bronshtein MD; Zinkicheva TT; Chi Q; Zhang J; Ulstrup J Phys Chem Chem Phys; 2012 May; 14(17):5953-65. PubMed ID: 22430606 [TBL] [Abstract][Full Text] [Related]
16. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Pogni R; Baratto MC; Giansanti S; Teutloff C; Verdin J; Valderrama B; Lendzian F; Lubitz W; Vazquez-Duhalt R; Basosi R Biochemistry; 2005 Mar; 44(11):4267-74. PubMed ID: 15766255 [TBL] [Abstract][Full Text] [Related]
17. Electron transfer within a reaction path model calibrated by constrained DFT calculations: application to mixed-valence organic compounds. Mangaud E; de la Lande A; Meier C; Desouter-Lecomte M Phys Chem Chem Phys; 2015 Dec; 17(46):30889-903. PubMed ID: 26041466 [TBL] [Abstract][Full Text] [Related]
18. Role of tryptophan-208 residue in cytochrome c oxidation by ascorbate peroxidase from Leishmania major-kinetic studies on Trp208Phe mutant and wild type enzyme. Yadav RK; Dolai S; Pal S; Adak S Biochim Biophys Acta; 2008 May; 1784(5):863-71. PubMed ID: 18342641 [TBL] [Abstract][Full Text] [Related]
19. In silico spectroscopy of tryptophan and tyrosine radicals involved in the long-range electron transfer of cytochrome c peroxidase. Bernini C; Arezzini E; Basosi R; Sinicropi A J Phys Chem B; 2014 Aug; 118(32):9525-37. PubMed ID: 25084495 [TBL] [Abstract][Full Text] [Related]
20. Full-dimensional multilayer multiconfigurational time-dependent Hartree study of electron transfer dynamics in the anthracene/C60 complex. Xie Y; Zheng J; Lan Z J Chem Phys; 2015 Feb; 142(8):084706. PubMed ID: 25725750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]