These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33317313)
1. Reduced-cost supercell approach for computing accurate phonon density of states in organic crystals. Cook C; Beran GJO J Chem Phys; 2020 Dec; 153(22):224105. PubMed ID: 33317313 [TBL] [Abstract][Full Text] [Related]
2. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). Brandenburg JG; Grimme S J Phys Chem Lett; 2014 Jun; 5(11):1785-9. PubMed ID: 26273854 [TBL] [Abstract][Full Text] [Related]
3. Modeling the α- and β-resorcinol phase boundary via combination of density functional theory and density functional tight-binding. Cook C; McKinley JL; Beran GJO J Chem Phys; 2021 Apr; 154(13):134109. PubMed ID: 33832233 [TBL] [Abstract][Full Text] [Related]
4. Evaluating Computational Shortcuts in Supercell-Based Phonon Calculations of Molecular Crystals: The Instructive Case of Naphthalene. Kamencek T; Wieser S; Kojima H; Bedoya-Martínez N; Dürholt JP; Schmid R; Zojer E J Chem Theory Comput; 2020 Apr; 16(4):2716-2735. PubMed ID: 32155063 [TBL] [Abstract][Full Text] [Related]
5. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding. Fox H; Newman KE; Schneider WF; Corcelli SA J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305 [TBL] [Abstract][Full Text] [Related]
6. All-electron LCAO calculations of the LiF crystal phonon spectrum: Influence of the basis set, the exchange-correlation functional, and the supercell size. Evarestov RA; Losev MV J Comput Chem; 2009 Dec; 30(16):2645-55. PubMed ID: 19382176 [TBL] [Abstract][Full Text] [Related]
7. Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions. Niehaus TA; Melissen STAG; Aradi B; Vaez Allaei SM J Phys Condens Matter; 2019 Oct; 31(39):395901. PubMed ID: 31261140 [TBL] [Abstract][Full Text] [Related]
8. First-principles study of the lattice dynamics of Sb2S3. Liu Y; Chua KT; Sum TC; Gan CK Phys Chem Chem Phys; 2014 Jan; 16(1):345-50. PubMed ID: 24256722 [TBL] [Abstract][Full Text] [Related]
10. Vibrational Modes and Phonon and Thermodynamic Properties of the Metaboric Acid Polymorphs α-, β-, and γ-(BOH) da Silva MB; Santos RCR; Rodríguez Hernández JS; Caetano EWS; Freire VN J Phys Chem A; 2018 Sep; 122(38):7628-7645. PubMed ID: 30226385 [TBL] [Abstract][Full Text] [Related]
11. A density-functional benchmark of vibrational free-energy corrections for molecular crystal polymorphism. Weatherby JA; Rumson AF; Price AJA; Otero de la Roza A; Johnson ER J Chem Phys; 2022 Mar; 156(11):114108. PubMed ID: 35317597 [TBL] [Abstract][Full Text] [Related]
12. Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. Brandenburg JG; Grimme S Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):502-13. PubMed ID: 27484372 [TBL] [Abstract][Full Text] [Related]
13. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
14. Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical DFT-D Accurate Enough? Wen S; Beran GJ J Chem Theory Comput; 2012 Aug; 8(8):2698-705. PubMed ID: 26592115 [TBL] [Abstract][Full Text] [Related]
15. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography. Beran GJ; Hartman JD; Heit YN Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668 [TBL] [Abstract][Full Text] [Related]
16. Phonon, IR, and Raman spectra, NMR parameters, and elastic constant calculations for AlH3 polymorphs. Vajeeston P; Ravindran P; Fjellvåg H J Phys Chem A; 2011 Oct; 115(39):10708-19. PubMed ID: 21870834 [TBL] [Abstract][Full Text] [Related]
17. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study. Cuny J; Korchagina K; Menakbi C; Mineva T J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939 [TBL] [Abstract][Full Text] [Related]
18. DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting. Bedoya-Martínez N; Schrode B; Jones AOF; Salzillo T; Ruzié C; Demitri N; Geerts YH; Venuti E; Della Valle RG; Zojer E; Resel R J Phys Chem Lett; 2017 Aug; 8(15):3690-3695. PubMed ID: 28731723 [TBL] [Abstract][Full Text] [Related]
19. A combined model of electron density and lattice dynamics refined against elastic diffraction data. Thermodynamic properties of crystalline L-alanine. Sovago I; Hoser AA; Madsen AØ Acta Crystallogr A Found Adv; 2020 Jan; 76(Pt 1):32-44. PubMed ID: 31908347 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]