These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33317820)

  • 1. Trajectory linearization-based robust course keeping control of unmanned surface vehicle with disturbances and input saturation.
    Qiu B; Wang G; Fan Y
    ISA Trans; 2021 Jun; 112():168-175. PubMed ID: 33317820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation.
    Fu C; Tian Y; Huang H; Zhang L; Peng C
    ISA Trans; 2018 Oct; 81():52-62. PubMed ID: 30153895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global fixed-time trajectory tracking control of underactuated USV based on fixed-time extended state observer.
    Fan Y; Qiu B; Liu L; Yang Y
    ISA Trans; 2023 Jan; 132():267-277. PubMed ID: 35803760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.
    Shao X; Wang H
    ISA Trans; 2015 Jan; 54():27-38. PubMed ID: 25082266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.
    Xingling S; Honglun W
    ISA Trans; 2014 Nov; 53(6):1771-86. PubMed ID: 25451817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fault-tolerant trajectory tracking control for unmanned surface vehicle with actuator faults based on a fast fixed-time system.
    Wan L; Cao Y; Sun Y; Qin H
    ISA Trans; 2022 Nov; 130():79-91. PubMed ID: 35491250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Fast Non-Singular Terminal Sliding Mode Path Following Control for an Underactuated Unmanned Surface Vehicle with Uncertainties and Unknown Disturbances.
    Fan Y; Liu B; Wang G; Mu D
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks.
    Shao S; Chen M; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3708-3721. PubMed ID: 30763247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial delay based robust guidance strategy for an interceptor with input saturation.
    Banerjee A; Mukherjee J; Un Nabi M; Kar IN
    ISA Trans; 2021 Mar; 109():34-48. PubMed ID: 33012535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties.
    Qu Y; Xiao B; Fu Z; Yuan D
    ISA Trans; 2018 Jul; 78():47-55. PubMed ID: 29921420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event trigger based adaptive neural trajectory tracking finite time control for underactuated unmanned marine surface vessels with asymmetric input saturation.
    Hu Y; Zhang Q; Liu Y; Meng X
    Sci Rep; 2023 Jun; 13(1):10126. PubMed ID: 37349350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust control of post-stall pitching maneuver based on finite-time observer.
    Wu D; Chen M; Gong H
    ISA Trans; 2017 Sep; 70():53-63. PubMed ID: 28689699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel adaptive law for super-twisting controller: USV tracking control under disturbances.
    Alvaro-Mendoza E; Gonzalez-Garcia A; Castañeda H; De León-Morales J
    ISA Trans; 2023 Aug; 139():561-573. PubMed ID: 37142492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust adaptive three-dimensional trajectory tracking control scheme design for small fixed-wing UAVs.
    Yang W; Shi Z; Zhong Y
    ISA Trans; 2023 Oct; 141():377-391. PubMed ID: 37453890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation.
    Li M; Guo C; Yu H; Yuan Y
    ISA Trans; 2022 Jun; 125():306-317. PubMed ID: 34275611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-Based Line-of-Sight Path Tracking of Underactuated Unmanned Surface Vehicles With Experiment Results.
    Wu W; Peng Z; Wang D; Liu L; Han QL
    IEEE Trans Cybern; 2022 Oct; 52(10):10937-10947. PubMed ID: 34033573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network for 3D trajectory tracking control of a CMG-actuated underwater vehicle with input saturation.
    Xu R; Tang G; Xie D; Han L; Huang H
    ISA Trans; 2022 Apr; 123():152-167. PubMed ID: 34176606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric-based prescribed performance control for unmanned aerial manipulator system under model uncertainties and external disturbances.
    Zhan W; Chen Y; He B; Miao Z; Zhang H; Wang Y
    ISA Trans; 2022 Sep; 128(Pt B):367-379. PubMed ID: 34861985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances.
    Lu Q; Chen J; Wang Q; Zhang D; Sun M; Su CY
    ISA Trans; 2022 Oct; 129(Pt A):273-286. PubMed ID: 35039151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite RISE control for vehicle-mounted servo system with unknown modeling uncertainties and unknown time-varying disturbances.
    Li Y; Zhang Z; Bai M; Song G
    ISA Trans; 2024 Apr; 147():590-601. PubMed ID: 38423838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.