These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33318586)

  • 1. Author Correction: Positive-negative tunable liquid crystal lenses based on a microstructured transmission line.
    Algorri JF; Morawiak P; Bennis N; Zografopoulos DC; Urruchi V; Rodríguez-Cobo L; Jaroszewicz LR; Sánchez-Pena JM; López-Higuera JM
    Sci Rep; 2020 Dec; 10(1):22338. PubMed ID: 33318586
    [No Abstract]   [Full Text] [Related]  

  • 2. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line.
    Algorri JF; Morawiak P; Bennis N; Zografopoulos DC; Urruchi V; Rodríguez-Cobo L; Jaroszewicz LR; Sánchez-Pena JM; López-Higuera JM
    Sci Rep; 2020 Jun; 10(1):10153. PubMed ID: 32576870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light Responsive Microstructured Surfaces of Liquid Crystalline Network with Shape Memory and Tunable Wetting Behaviors.
    Wu ZL; Wang ZJ; Keller P; Zheng Q
    Macromol Rapid Commun; 2016 Feb; 37(4):311-7. PubMed ID: 26676211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio.
    Lin YH; Chen MS; Lin HC
    Opt Express; 2011 Feb; 19(5):4714-21. PubMed ID: 21369302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field.
    Chen HS; Lin YH
    Opt Express; 2013 Jul; 21(15):18079-88. PubMed ID: 23938679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the key design parameters of liquid crystal tunable lenses for depth-from-focus algorithm.
    Emberger S; Alacoque L; Dupret A; Fraval N; de Bougrenet de la Tocnaye JL
    Appl Opt; 2018 Jan; 57(1):85-91. PubMed ID: 29328118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses.
    Chen MS; Chen PJ; Chen M; Lin YH
    Opt Express; 2014 May; 22(10):11427-35. PubMed ID: 24921264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of electrically tunable aspherical optofluidic lenses.
    Mishra K; Mugele F
    Opt Express; 2016 Jun; 24(13):14672-81. PubMed ID: 27410619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals.
    Hsu CJ; Sheu CR
    Opt Express; 2012 Feb; 20(4):4738-46. PubMed ID: 22418230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Tunable Lens Based on Boundary Tension Effect.
    Yang A; Cao J; Zhang F; Cheng Y; Hao Q
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications.
    Lin YH; Chen HS
    Opt Express; 2013 Apr; 21(8):9428-36. PubMed ID: 23609654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.
    Li L; Bryant D; Van Heugten T; Bos PJ
    Opt Express; 2013 Apr; 21(7):8371-81. PubMed ID: 23571926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Author Correction: A high birefringence liquid crystal for lenses with large aperture.
    Bennis N; Jankowski T; Strzezysz O; Pakuła A; Zografopoulos DC; Perkowski P; Sánchez-Pena JM; López-Higuera JM; Algorri JF
    Sci Rep; 2022 Sep; 12(1):16351. PubMed ID: 36175456
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrically tunable gradient-index lenses via nematic liquid crystals with a method of spatially extended phase distribution.
    Wang YJ; Hsieh HA; Lin YH
    Opt Express; 2019 Oct; 27(22):32398-32408. PubMed ID: 31684454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of liquid crystal tunable lenses with weakly conductive layers using multifrequency driving.
    Vanackere T; Vandekerckhove T; Claeys E; George JP; Neyts K; Beeckman J
    Opt Lett; 2020 Feb; 45(4):1001-1004. PubMed ID: 32058526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength tunable infrared light source based on semiconductor-integrated liquid crystal filter.
    Yao YH; Wang CT; Chen RR; Jau HC; Chiu YJ; Lin TH
    Opt Express; 2012 Sep; 20(20):22872-7. PubMed ID: 23037436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-electrode tunable liquid crystal lenses with one lithography step.
    Beeckman J; Yang TH; Nys I; George JP; Lin TH; Neyts K
    Opt Lett; 2018 Jan; 43(2):271-274. PubMed ID: 29328257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element.
    Chen HS; Lin YH; Srivastava AK; Chigrinov VG; Chang CM; Wang YJ
    Opt Express; 2014 Jun; 22(11):13138-45. PubMed ID: 24921509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Miniature Tunable Liquid Lenses Using Transparent Graphene Electrodes.
    Shahini A; Xia J; Zhou Z; Zhao Y; Cheng MM
    Langmuir; 2016 Feb; 32(6):1658-65. PubMed ID: 26800762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses.
    Bagramyan A; Galstian T; Saghatelyan A
    J Biophotonics; 2017 Jun; 10(6-7):762-774. PubMed ID: 26954754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.