These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33318632)

  • 1. Reverse Chromatin Immunoprecipitation (R-ChIP) enables investigation of the upstream regulators of plant genes.
    Wen X; Wang J; Zhang D; Ding Y; Ji X; Tan Z; Wang Y
    Commun Biol; 2020 Dec; 3(1):770. PubMed ID: 33318632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse Chromatin Immunoprecipitation (R-ChIP).
    Wen X; Wang Y
    Methods Mol Biol; 2024; 2846():123-132. PubMed ID: 39141233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building a Robust Chromatin Immunoprecipitation Method with Substantially Improved Efficiency.
    Zhao H; Li H; Jia Y; Wen X; Guo H; Xu H; Wang Y
    Plant Physiol; 2020 Jul; 183(3):1026-1034. PubMed ID: 32327547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions.
    Jarillo JA; Komar DN; Piñeiro M
    Methods Mol Biol; 2018; 1794():323-334. PubMed ID: 29855969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin Immunoprecipitation Using Imbibed Seeds of Arabidopsis thaliana.
    Kwon Y; Choi G
    Methods Mol Biol; 2024; 2830():81-91. PubMed ID: 38977570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants.
    Posé D; Yant L
    Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos.
    Wang H; Tang W; Zhu C; Perry SE
    Plant J; 2002 Dec; 32(5):831-43. PubMed ID: 12472697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure.
    Harmeyer KM; South PF; Bishop B; Ogas J; Briggs SD
    Nucleic Acids Res; 2015 Mar; 43(6):e38. PubMed ID: 25539918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis.
    Desvoyes B; Vergara Z; Sequeira-Mendes J; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():71-82. PubMed ID: 29052186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tagging of MADS domain proteins for chromatin immunoprecipitation.
    de Folter S; Urbanus SL; van Zuijlen LG; Kaufmann K; Angenent GC
    BMC Plant Biol; 2007 Sep; 7():47. PubMed ID: 17868439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation.
    Beischlag TV; Prefontaine GG; Hankinson O
    Methods Mol Biol; 2018; 1689():103-112. PubMed ID: 29027168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling Protein-DNA Interactions by Chromatin Immunoprecipitation in Arabidopsis.
    Susila H; Nasim Z; Jin S; Youn G; Jeong H; Jung JY; Ahn JH
    Methods Mol Biol; 2021; 2261():345-356. PubMed ID: 33421000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly reproducible ChIP-on-chip analysis to identify genome-wide protein binding and chromatin status in Arabidopsis thaliana.
    Kim JM; To TK; Tanaka M; Endo TA; Matsui A; Ishida J; Robertson FC; Toyoda T; Seki M
    Methods Mol Biol; 2014; 1062():405-26. PubMed ID: 24057379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.
    Wang S; Lau OS
    Methods Mol Biol; 2018; 1689():167-176. PubMed ID: 29027174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.
    Komar DN; Mouriz A; Jarillo JA; Piñeiro M
    J Vis Exp; 2016 Jan; (107):e53422. PubMed ID: 26863263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation experiments to investigate in vivo binding of Arabidopsis transcription factors to target sequences.
    Fode B; Gatz C
    Methods Mol Biol; 2009; 479():261-72. PubMed ID: 19083182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis.
    Cortijo S; Charoensawan V; Roudier F; Wigge PA
    Methods Mol Biol; 2018; 1761():231-248. PubMed ID: 29525962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using ChIP-SICAP to Identify Proteins That Co-localize in Chromatin.
    Rafiee MR; Krijgsveld J
    Methods Mol Biol; 2021; 2351():275-288. PubMed ID: 34382195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.