BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

915 related articles for article (PubMed ID: 33318659)

  • 1. Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C; Wang T; Michaelos M; Pachitariu M
    Nat Methods; 2021 Jan; 18(1):100-106. PubMed ID: 33318659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.
    Kleinberg G; Wang S; Comellas E; Monaghan JR; Shefelbine SJ
    Cells Dev; 2022 Dec; 172():203806. PubMed ID: 36029974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellpose 2.0: how to train your own model.
    Pachitariu M; Stringer C
    Nat Methods; 2022 Dec; 19(12):1634-1641. PubMed ID: 36344832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyto R-CNN and CytoNuke Dataset: Towards reliable whole-cell segmentation in bright-field histological images.
    Raufeisen J; Xie K; Hörst F; Braunschweig T; Li J; Kleesiek J; Röhrig R; Egger J; Leibe B; Hölzle F; Hermans A; Puladi B
    Comput Methods Programs Biomed; 2024 Jul; 252():108215. PubMed ID: 38781811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images.
    Riendeau JM; Gillette AA; Guzman EC; Cruz MC; Kralovec A; Udgata S; Schmitz A; Deming DA; Cimini BA; Skala MC
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating cell segmentation with the projection-enhancement network.
    Eddy CZ; Naylor A; Cunningham CT; Sun B
    Phys Biol; 2023 Oct; 20(6):. PubMed ID: 37769666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C1M2: a universal algorithm for 3D instance segmentation, annotation, and quantification of irregular cells.
    Zheng H; Huang S; Zhang J; Zhang R; Wang J; Yuan J; Li A; Yang X; Zhang Z
    Sci China Life Sci; 2023 Oct; 66(10):2415-2428. PubMed ID: 37243949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic image annotation for fluorescent cell nuclei segmentation.
    Englbrecht F; Ruider IE; Bausch AR
    PLoS One; 2021; 16(4):e0250093. PubMed ID: 33861785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An end-to-end pipeline based on open source deep learning tools for reliable analysis of complex 3D images of ovaries.
    Lesage M; Thomas M; Pécot T; Ly TK; Hinfray N; Beaudouin R; Neumann M; Lovell-Badge R; Bugeon J; Thermes V
    Development; 2023 Apr; 150(7):. PubMed ID: 36971372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation.
    Belevich I; Jokitalo E
    PLoS Comput Biol; 2021 Mar; 17(3):e1008374. PubMed ID: 33651804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
    Yang L; Ghosh RP; Franklin JM; Chen S; You C; Narayan RR; Melcher ML; Liphardt JT
    PLoS Comput Biol; 2020 Sep; 16(9):e1008193. PubMed ID: 32925919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle.
    Waisman A; Norris AM; Elías Costa M; Kopinke D
    Sci Rep; 2021 Jun; 11(1):11793. PubMed ID: 34083673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.