These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33318953)

  • 1. Description and validation of a circular padding method for linear roughness measurements of short data lengths.
    Schoeters S; Dewulf W; Kruth JP; Haitjema H; Boeckmans B
    MethodsX; 2020; 7():101122. PubMed ID: 33318953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation and development of a deep learning framework to predict process-induced surface roughness in additively manufactured aluminum alloys.
    Muhammad W; Kang J; Ibragimova O; Inal K
    Weld World; 2023; 67(4):897-921. PubMed ID: 37070123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy.
    Maamoun AH; Xue YF; Elbestawi MA; Veldhuis SC
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30469468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting.
    Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Powder Deposition on Powder Bed and Specimen Properties.
    Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.
    Alfieri V; Argenio P; Caiazzo F; Sergi V
    Materials (Basel); 2016 Dec; 10(1):. PubMed ID: 28772380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting.
    Deng Y; Mao Z; Yang N; Niu X; Lu X
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Wavelet Packet Transform for Surface Roughness Evaluation and Texture Extraction.
    Wang X; Shi T; Liao G; Zhang Y; Hong Y; Chen K
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting.
    Razavykia A; Brusa E; Delprete C; Yavari R
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of High-Frequency Measurement Errors from Turned Surface Topography Data Using Machine Learning Methods.
    Podulka P; Kulisz M; Antosz K
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38611971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder Surface Roughness as Proxy for Bed Density in Powder Bed Fusion of Polymers.
    Sillani F; Schiegg R; Schmid M; MacDonald E; Wegener K
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting.
    Antanasova M; Kocjan A; Hočevar M; Jevnikar P
    J Prosthet Dent; 2020 Mar; 123(3):491-499. PubMed ID: 31307799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process.
    Galati M; Minetola P; Rizza G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional measuring technique for surface topography using a light-sectioning microscope.
    Xia L; Chen P; Wang Y; Zhou L; Luo X
    Appl Opt; 2012 Mar; 51(8):1162-70. PubMed ID: 22410997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.
    Wang P; Sin WJ; Nai MLS; Wei J
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing.
    Wüst P; Edelmann A; Hellmann R
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machinability of INCONEL718 Alloy with a Porous Microstructure Produced by Laser Melting Powder Bed Fusion at Higher Energy Densities.
    Wood P; Díaz-Álvarez A; Díaz-Álvarez J; Miguélez MH; Rusinek A; Gunputh UF; Williams G; Bahi S; Sienkiewicz J; Płatek P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33334067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the influence of zero-padding on the nonlinear operations in Quantitative Susceptibility Mapping.
    Eskreis-Winkler S; Zhou D; Liu T; Gupta A; Gauthier SA; Wang Y; Spincemaille P
    Magn Reson Imaging; 2017 Jan; 35():154-159. PubMed ID: 27587225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of unwanted variability in measurement and description of skin surface topography.
    Connemann BJ; Busche H; Kreusch J; Wolff HH
    Skin Res Technol; 1996 Feb; 2(1):40-8. PubMed ID: 27327058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.