These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33319212)

  • 21. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV.
    Park JY; Ko JA; Kim DW; Kim YM; Kwon HJ; Jeong HJ; Kim CY; Park KH; Lee WS; Ryu YB
    J Enzyme Inhib Med Chem; 2016; 31(1):23-30. PubMed ID: 25683083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug-Repurposing Screening Identified Tropifexor as a SARS-CoV-2 Papain-like Protease Inhibitor.
    Ma C; Hu Y; Wang Y; Choza J; Wang J
    ACS Infect Dis; 2022 May; 8(5):1022-1030. PubMed ID: 35404564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Patent Review on SARS Coronavirus Papain-Like Protease (PL
    Brian Chia CS; Pheng Lim S
    ChemMedChem; 2023 Aug; 18(16):e202300216. PubMed ID: 37248169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation.
    Bepari AK; Reza HM
    PeerJ; 2021; 9():e11261. PubMed ID: 33954055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CL
    Khalifa I; Zhu W; Mohammed HHH; Dutta K; Li C
    J Food Biochem; 2020 Oct; 44(10):e13432. PubMed ID: 32783247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current Strategies of Antiviral Drug Discovery for COVID-19.
    Mei M; Tan X
    Front Mol Biosci; 2021; 8():671263. PubMed ID: 34055887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease.
    Akaji K; Konno H
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints.
    Jukič M; Kores K; Janežič D; Bren U
    Front Chem; 2021; 9():757826. PubMed ID: 35028304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
    Goyal B; Goyal D
    ACS Comb Sci; 2020 Jun; 22(6):297-305. PubMed ID: 32402186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations.
    Ahmad B; Batool M; Ain QU; Kim MS; Choi S
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL
    Mouffouk C; Mouffouk S; Mouffouk S; Hambaba L; Haba H
    Eur J Pharmacol; 2021 Jan; 891():173759. PubMed ID: 33249077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 M
    Mousavi H; Zeynizadeh B; Rimaz M
    Bioorg Chem; 2023 Jun; 135():106390. PubMed ID: 37037129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SARS-CoV-2 main protease (M
    Hu Q; Xiong Y; Zhu GH; Zhang YN; Zhang YW; Huang P; Ge GB
    MedComm (2020); 2022 Sep; 3(3):e151. PubMed ID: 35845352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An
    Mishra B; Ballaney P; Saha G; Shinde A; Banerjee S; Thimmakondu VS; Aduri R
    J Biomol Struct Dyn; 2023 May; 41(8):3167-3186. PubMed ID: 35261325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorine Atoms on C
    Chaves OA; Rodrigues-Santos CE; Echevarria Á; Sacramento CQ; Fintelman-Rodrigues N; Temerozo JR; Castro-Faria-Neto HC; Souza TMLE
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The emerging SARS-CoV-2 papain-like protease: Its relationship with recent coronavirus epidemics.
    Kandeel M; Kitade Y; Fayez M; Venugopala KN; Ibrahim A
    J Med Virol; 2021 Mar; 93(3):1581-1588. PubMed ID: 32902889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative analysis of SARS-CoV-2 antivirals characterizes 3CL
    de Vries M; Mohamed AS; Prescott RA; Valero-Jimenez AM; Desvignes L; O'Connor R; Steppan C; Devlin JC; Ivanova E; Herrera A; Schinlever A; Loose P; Ruggles K; Koralov SB; Anderson AS; Binder J; Dittmann M
    J Virol; 2021 Mar; 95(7):. PubMed ID: 33622961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment.
    Elzupir AO
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prioritisation of Compounds for 3CL
    Jukič M; Škrlj B; Tomšič G; Pleško S; Podlipnik Č; Bren U
    Molecules; 2021 May; 26(10):. PubMed ID: 34070140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M
    Kneller DW; Phillips G; O'Neill HM; Tan K; Joachimiak A; Coates L; Kovalevsky A
    IUCrJ; 2020 Sep; 7(Pt 6):1028-35. PubMed ID: 33063790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.