These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33319218)

  • 1. Direct current electric field regulates endothelial permeability under physiologically relevant fluid forces in a microfluidic vessel bifurcation model.
    Mohana Sundaram P; Rangharajan KK; Akbari E; Hadick TJ; Song JW; Prakash S
    Lab Chip; 2021 Jan; 21(2):319-330. PubMed ID: 33319218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Lab Chip; 2018 Mar; 18(7):1084-1093. PubMed ID: 29488533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate.
    Akbari E; Spychalski GB; Menyhert MM; Rangharajan KK; Tinapple JW; Prakash S; Song JW
    Biomater Biosyst; 2021 Sep; 3():. PubMed ID: 35317095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase.
    Bevan HS; Slater SC; Clarke H; Cahill PA; Mathieson PW; Welsh GI; Satchell SC
    Am J Physiol Renal Physiol; 2011 Oct; 301(4):F733-42. PubMed ID: 21775480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.
    Davies PF; Dewey CF; Bussolari SR; Gordon EJ; Gimbrone MA
    J Clin Invest; 1984 Apr; 73(4):1121-9. PubMed ID: 6707208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A passive pump-assisted microfluidic assay for quantifying endothelial wound healing in response to fluid shear stress.
    Yang Y; Li Y; Yu M; Xue C; Liu B; Wang Y; Qin K
    Electrophoresis; 2022 Nov; 43(21-22):2195-2205. PubMed ID: 35899363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.
    Malek AM; Gibbons GH; Dzau VJ; Izumo S
    J Clin Invest; 1993 Oct; 92(4):2013-21. PubMed ID: 8408655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress.
    Dangaria JH; Butler PJ
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1568-75. PubMed ID: 17670893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.
    Gojova A; Barakat AI
    J Appl Physiol (1985); 2005 Jun; 98(6):2355-62. PubMed ID: 15705727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human dermal microvascular endothelial cell morphological response to fluid shear stress.
    Polk T; Schmitt S; Aldrich JL; Long DS
    Microvasc Res; 2022 Sep; 143():104377. PubMed ID: 35561754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic impedance platform for real-time,
    Velasco V; Soucy P; Keynton R; Williams SJ
    Lab Chip; 2022 Nov; 22(23):4705-4716. PubMed ID: 36349980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial cells exposed to erythrocytes under shear stress: an in vitro study.
    Sirois E; Charara J; Ruel J; Dussault JC; Gagnon P; Doillon CJ
    Biomaterials; 1998 Nov; 19(21):1925-34. PubMed ID: 9863526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces.
    Hsu S; Thakar R; Liepmann D; Li S
    Biochem Biophys Res Commun; 2005 Nov; 337(1):401-9. PubMed ID: 16188239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cells cultured on engineered vascular grafts are able to transduce shear stress.
    Fernandez P; Daculsi R; Rémy-Zolghadri M; Bareille R; Bordenave L
    Tissue Eng; 2006 Jan; 12(1):1-7. PubMed ID: 16499437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing anisotropic elasticity of endothelium under fluid shear stress.
    Ko PL; Wang CK; Hsu HH; Lee TA; Tung YC
    Acta Biomater; 2022 Jun; 145():316-328. PubMed ID: 35367381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.
    Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A
    Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.