BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33319326)

  • 1. Investigating the effects of differently produced synthetic amorphous silica (E 551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model.
    Hempt C; Hirsch C; Hannig Y; Rippl A; Wick P; Buerki-Thurnherr T
    Arch Toxicol; 2021 Mar; 95(3):837-852. PubMed ID: 33319326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium.
    Hempt C; Kaiser JP; Scholder O; Buerki-Thurnherr T; Hofmann H; Rippl A; Schuster TB; Wick P; Hirsch C
    Toxicol In Vitro; 2020 Sep; 67():104903. PubMed ID: 32473318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles.
    Zaiter T; Cornu R; Millot N; Herbst M; Pellequer Y; Moarbess G; Martin H; Diab-Assaf M; Béduneau A
    Nanotoxicology; 2022 Mar; 16(2):165-182. PubMed ID: 35579945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the usefulness of the complex in vitro intestinal epithelial model Caco-2/HT29/Raji-B in nanotoxicology.
    García-Rodríguez A; Vila L; Cortés C; Hernández A; Marcos R
    Food Chem Toxicol; 2018 Mar; 113():162-170. PubMed ID: 29421767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MyD88-dependent pro-interleukin-1β induction in dendritic cells exposed to food-grade synthetic amorphous silica.
    Winkler HC; Kornprobst J; Wick P; von Moos LM; Trantakis I; Schraner EM; Bathke B; Hochrein H; Suter M; Naegeli H
    Part Fibre Toxicol; 2017 Jun; 14(1):21. PubMed ID: 28645296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551).
    Fruijtier-Pölloth C
    Arch Toxicol; 2016 Dec; 90(12):2885-2916. PubMed ID: 27699444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials.
    Ude VC; Brown DM; Stone V; Johnston HJ
    J Nanobiotechnology; 2019 May; 17(1):70. PubMed ID: 31113462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food.
    van Kesteren PC; Cubadda F; Bouwmeester H; van Eijkeren JC; Dekkers S; de Jong WH; Oomen AG
    Nanotoxicology; 2015 May; 9(4):442-52. PubMed ID: 25033893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: A multitarget approach.
    Tassinari R; Di Felice G; Butteroni C; Barletta B; Corinti S; Cubadda F; Aureli F; Raggi A; Narciso L; Tait S; Valeri M; Martinelli A; Di Virgilio A; Pacchierotti F; Cordelli E; Eleuteri P; Villani P; Fessard V; Maranghi F
    Food Chem Toxicol; 2020 Mar; 137():111168. PubMed ID: 32007467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food-grade TiO
    Talbot P; Radziwill-Bienkowska JM; Kamphuis JBJ; Steenkeste K; Bettini S; Robert V; Noordine ML; Mayeur C; Gaultier E; Langella P; Robbe-Masselot C; Houdeau E; Thomas M; Mercier-Bonin M
    J Nanobiotechnology; 2018 Jun; 16(1):53. PubMed ID: 29921300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the fate and biological responses of food additive silica particles in commercial foods.
    Yu J; Kim YH; Kim HM; Oh JM; Kim YR; Choi SJ
    Food Chem; 2020 Nov; 331():127304. PubMed ID: 32562980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical review of the safety assessment of nano-structured silica additives in food.
    Winkler HC; Suter M; Naegeli H
    J Nanobiotechnology; 2016 Jun; 14(1):44. PubMed ID: 27287345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model.
    Guo Z; Martucci NJ; Liu Y; Yoo E; Tako E; Mahler GJ
    Nanotoxicology; 2018 Jun; 12(5):485-508. PubMed ID: 29668341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota.
    Yan J; Wang D; Li K; Chen Q; Lai W; Tian L; Lin B; Tan Y; Liu X; Xi Z
    Environ Toxicol Pharmacol; 2020 Nov; 80():103485. PubMed ID: 32891757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.
    Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicological impact of acute exposure to E171 food additive and TiO
    Dorier M; Tisseyre C; Dussert F; Béal D; Arnal ME; Douki T; Valdiglesias V; Laffon B; Fraga S; Brandão F; Herlin-Boime N; Barreau F; Rabilloud T; Carriere M
    Mutat Res Genet Toxicol Environ Mutagen; 2019 Sep; 845():402980. PubMed ID: 31561898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.
    Barnett AM; Roy NC; McNabb WC; Cookson AL
    Nutrients; 2016 May; 8(5):. PubMed ID: 27164134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure.
    Brand W; van Kesteren PCE; Peters RJB; Oomen AG
    Nanotoxicology; 2021 Sep; 15(7):905-933. PubMed ID: 34074217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium.
    Georgantzopoulou A; Serchi T; Cambier S; Leclercq CC; Renaut J; Shao J; Kruszewski M; Lentzen E; Grysan P; Eswara S; Audinot JN; Contal S; Ziebel J; Guignard C; Hoffmann L; Murk AJ; Gutleb AC
    Part Fibre Toxicol; 2016 Feb; 13():9. PubMed ID: 26888332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.