BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33319633)

  • 1. A study on the reaction mechanism of microwave pyrolysis of oily sludge by products analysis and ReaxFF MD simulation.
    Wen Y; Li W; Xie Y; Qin Z; Gu M; Wang T; Hou Y
    Environ Technol; 2022 May; 43(13):2002-2016. PubMed ID: 33319633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation.
    Wen Y; Xie Y; Jiang C; Li W; Hou Y
    Bioresour Technol; 2021 Jun; 329():124822. PubMed ID: 33631453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of additives on the distribution of three-phase products of oily sludge subjected to microwave pyrolysis.
    Song Z; Xu B; Xu C; Yu J; Su Y; Zhao X; Sun J; Mao Y; Wang W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1445-1455. PubMed ID: 34955077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study by microwave pyrolysis and conventional pyrolysis of pharmaceutical sludge: Resourceful disposal and antibiotic adsorption.
    Zhou Y; Lin F; Ling Z; Zhan M; Zhang G; Yuan D
    J Hazard Mater; 2024 Apr; 468():133867. PubMed ID: 38402683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the microwave pyrolysis and microwave CO
    Chun YN; Jeong BR
    Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges.
    Domínguez A; Menéndez JA; Inguanzo M; Bernad PL; Pis JJ
    J Chromatogr A; 2003 Sep; 1012(2):193-206. PubMed ID: 14521315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
    Zhou X; Jia H; Qu C; Fan D; Wang C
    Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slurry phase biodegradation of heavy oily sludge and evidence of asphaltene biotransformation.
    Chand P; Dutta S; Mukherji S
    J Environ Manage; 2022 Dec; 324():116315. PubMed ID: 36183530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogenizing microwave pyrolysis of oily sludge using nano-Fe
    Yan J; Shao Z; Cheng W; Xu S; Wen Q; He Z; Liu D; Li J; Lu X
    Environ Technol; 2023 Nov; ():1-12. PubMed ID: 37946552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.
    Zhou J; Liu S; Zhou N; Fan L; Zhang Y; Peng P; Anderson E; Ding K; Wang Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2018 May; 256():295-301. PubMed ID: 29455097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics, kinetics, infrared analysis and process optimization of co-pyrolysis of waste tires and oily sludge.
    Xu G; Cai X; Wang S; Fang B; Wang H; Zhu Y
    J Environ Manage; 2022 Aug; 316():115278. PubMed ID: 35576713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties.
    Bao D; Li Z; Liu X; Wan C; Zhang R; Lee DJ
    J Environ Manage; 2020 Aug; 268():110734. PubMed ID: 32510454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Catalytic Co-Pyrolysis Characteristics and Synergistic Effect of Oily Sludge and Walnut Shell.
    Li Q; Yang H; Chen P; Jiang W; Chen F; Yu X; Su G
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxiliary effect of CO
    Wang Z; Wang Z; Gong Z; Li X; Chu Z; Du L; Wu J; Jin Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):460-469. PubMed ID: 35603685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave pyrolysis of oily sludge under different control modes.
    Liu Y; Yu H; Jiang Z; Song Y; Zhang T; Siyal AA; Dai J; Bi X; Fu J; Ao W; Zhou C; Wang L; Li X; Jin X; Teng D; Fang J
    J Hazard Mater; 2021 Aug; 416():125887. PubMed ID: 34492825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different ash/organics and C/H/O ratios on characteristics and reaction mechanisms of sludge microwave pyrolysis to generate bio-fuels.
    Luo J; Lin J; Ma R; Chen X; Sun S; Zhang P; Liu X
    Waste Manag; 2020 Nov; 117():188-197. PubMed ID: 32861081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.