These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 33319692)
1. A Combined Approach of Pharmacophore Modeling, QSAR Study, Molecular Docking and In silico ADME/Tox Prediction of 4-Arylthio & 4-Aryloxy-3- Iodopyridine-2(1H)-one Analogs to Identify Potential Reverse Transcriptase Inhibitor: Anti-HIV Agents. Panigrahi D; Mishra A; Sahu SK; Azam MA; Vyshaag CM Med Chem; 2022; 18(1):51-87. PubMed ID: 33319692 [TBL] [Abstract][Full Text] [Related]
2. Application of 3D-QSAR, Pharmacophore, and Molecular Docking in the Molecular Design of Diarylpyrimidine Derivatives as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors. Liu G; Wang W; Wan Y; Ju X; Gu S Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29751616 [TBL] [Abstract][Full Text] [Related]
3. Docking-based 3D-QSAR and pharmacophore studies on diarylpyrimidines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Liu G; Wan Y; Wang W; Fang S; Gu S; Ju X Mol Divers; 2019 Feb; 23(1):107-121. PubMed ID: 30051344 [TBL] [Abstract][Full Text] [Related]
4. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors. Mao Y; Li Y; Hao M; Zhang S; Ai C J Mol Model; 2012 May; 18(5):2185-98. PubMed ID: 21947448 [TBL] [Abstract][Full Text] [Related]
5. An da Costa APL; Cardoso FJB; Molfetta FA J Biomol Struct Dyn; 2023 Mar; 41(5):1715-1729. PubMed ID: 34996334 [TBL] [Abstract][Full Text] [Related]
6. What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors? Paneth A; Płonka W; Paneth P J Mol Model; 2017 Oct; 23(11):317. PubMed ID: 29046967 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Novel Anoctamin1 (ANO1) Inhibitors Using 3D-QSAR Pharmacophore Modeling and Molecular Docking. Lee YH; Yi GS Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336555 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided molecular design of highly potent HIV-1 RT inhibitors: 3D QSAR and molecular docking studies of efavirenz derivatives. Pungpo P; Saparpakorn P; Wolschann P; Hannongbua S SAR QSAR Environ Res; 2006 Aug; 17(4):353-70. PubMed ID: 16920659 [TBL] [Abstract][Full Text] [Related]
9. Proposal of pharmacophore model for HIV reverse transcriptase inhibitors: Combined mutational effect analysis, molecular dynamics, molecular docking and pharmacophore modeling study. Annan A; Raiss N; Lemrabet S; Elomari N; Elmir EH; Filali-Maltouf A; Medraoui L; Oumzil H Int J Immunopathol Pharmacol; 2024; 38():3946320241231465. PubMed ID: 38296818 [TBL] [Abstract][Full Text] [Related]
10. QSAR and Pharmacophore Mapping Studies on Benzothiazinimines to Relate their Structural Features with anti-HIV Activity. Geethaavacini G; Poh GP; Yan LY; Deepashini R; Shalini S; Harish R; Sureshkumar K; Ravichandran V Med Chem; 2018; 14(7):733-740. PubMed ID: 29807521 [TBL] [Abstract][Full Text] [Related]
11. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents. Cele FN; Ramesh M; Soliman ME Drug Des Devel Ther; 2016; 10():1365-77. PubMed ID: 27114700 [TBL] [Abstract][Full Text] [Related]
12. Design of novel DABO derivatives as HIV-1 RT inhibitors using molecular docking, molecular dynamics simulations and ADMET properties. Zhang Y; Chen L; Wang Z; Zhu Y; Jiang H; Xu J; Xiong F J Biomol Struct Dyn; 2024 May; 42(8):4196-4213. PubMed ID: 37272892 [TBL] [Abstract][Full Text] [Related]
13. Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure. Mahmoudi A; Butler AE; Banach M; Jamialahmadi T; Sahebkar A Curr Probl Cardiol; 2023 Jun; 48(6):101660. PubMed ID: 36841313 [TBL] [Abstract][Full Text] [Related]
14. Docking field-based QSAR and pharmacophore studies on the substituted pyrimidine derivatives targeting HIV-1 reverse transcriptase. Fan N; Zhang S; Sheng T; Zhao L; Liu Z; Liu J; Wang X Chem Biol Drug Des; 2018 Feb; 91(2):398-407. PubMed ID: 28816417 [TBL] [Abstract][Full Text] [Related]
15. 3D-QSAR, molecular docking, and molecular dynamics simulation of a novel thieno[3,4-d]pyrimidine inhibitor targeting human immunodeficiency virus type 1 reverse transcriptase. Chu H; He QX; Wang JW; Deng YT; Wang J; Hu Y; Wang YQ; Lin ZH J Biomol Struct Dyn; 2020 Sep; 38(15):4567-4578. PubMed ID: 31760877 [TBL] [Abstract][Full Text] [Related]
16. Revolutionizing antiretroviral therapy for human immunodeficiency virus/AIDS: A computational approach using molecular docking, virtual screening, and 3D pharmacophore building to address therapeutic failure and propose highly effective candidates. Annan A; Raiss N; Elmir EH; Filali-Maltouf A; Medraoui L; Oumzil H Int J Immunopathol Pharmacol; 2023; 37():3946320231207514. PubMed ID: 37850462 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic insights into mode of action of novel natural cathepsin L inhibitors. Tyagi C; Grover S; Dhanjal J; Goyal S; Goyal M; Grover A BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S10. PubMed ID: 24564425 [TBL] [Abstract][Full Text] [Related]
20. Molecular modelling studies for the discovery of new substituted pyridines derivatives with angiotensin II AT1 receptor antagonists. Sharma MC Interdiscip Sci; 2014 Sep; 6(3):197-207. PubMed ID: 25205497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]