BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33319712)

  • 1. Towards semantic interoperability: finding and repairing hidden contradictions in biomedical ontologies.
    Slater LT; Gkoutos GV; Hoehndorf R
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 10):311. PubMed ID: 33319712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relations as patterns: bridging the gap between OBO and OWL.
    Hoehndorf R; Oellrich A; Dumontier M; Kelso J; Rebholz-Schuhmann D; Herre H
    BMC Bioinformatics; 2010 Aug; 11():441. PubMed ID: 20807438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Resolvability and Consistency in OBO Foundry Ontologies: Pilot Study.
    Zhang S; Benis N; Cornet R
    Stud Health Technol Inform; 2021 Nov; 287():104-108. PubMed ID: 34795091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representing default knowledge in biomedical ontologies: application to the integration of anatomy and phenotype ontologies.
    Hoehndorf R; Loebe F; Kelso J; Herre H
    BMC Bioinformatics; 2007 Oct; 8():377. PubMed ID: 17925014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unintended consequences of existential quantifications in biomedical ontologies.
    Boeker M; Tudose I; Hastings J; Schober D; Schulz S
    BMC Bioinformatics; 2011 Nov; 12():456. PubMed ID: 22115278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OBO Foundry in 2021: operationalizing open data principles to evaluate ontologies.
    Jackson R; Matentzoglu N; Overton JA; Vita R; Balhoff JP; Buttigieg PL; Carbon S; Courtot M; Diehl AD; Dooley DM; Duncan WD; Harris NL; Haendel MA; Lewis SE; Natale DA; Osumi-Sutherland D; Ruttenberg A; Schriml LM; Smith B; Stoeckert CJ; Vasilevsky NA; Walls RL; Zheng J; Mungall CJ; Peters B
    Database (Oxford); 2021 Oct; 2021():. PubMed ID: 34697637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary Analysis of the OBO Foundry Ontologies and Their Evolution Using OQuaRE.
    Quesada-Martínez M; Duque-Ramos A; Iniesta-Moreno M; Fernández-Breis JT
    Stud Health Technol Inform; 2017; 235():426-430. PubMed ID: 28423828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formal axioms in biomedical ontologies improve analysis and interpretation of associated data.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2020 Apr; 36(7):2229-2236. PubMed ID: 31821406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OBO to UML: Support for the development of conceptual models in the biomedical domain.
    Waldemarin RC; de Farias CRG
    J Biomed Inform; 2018 Apr; 80():14-25. PubMed ID: 29496629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How orthogonal are the OBO Foundry ontologies?
    Ghazvinian A; Noy NF; Musen MA
    J Biomed Semantics; 2011 May; 2 Suppl 2(Suppl 2):S2. PubMed ID: 21624157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning.
    Hoehndorf R; Dumontier M; Oellrich A; Rebholz-Schuhmann D; Schofield PN; Gkoutos GV
    PLoS One; 2011; 6(7):e22006. PubMed ID: 21789201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A UML profile for the OBO relation ontology.
    Guardia GD; Vêncio RZ; de Farias CR
    BMC Genomics; 2012; 13 Suppl 5(Suppl 5):S3. PubMed ID: 23095840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
    Kiourtis A; Nifakos S; Mavrogiorgou A; Kyriazis D
    Int J Med Inform; 2019 Dec; 132():104002. PubMed ID: 31629311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective method for detecting error causes from incoherent biological ontologies.
    Zhang Y; Wu H; Gao J; Zhang Y; Yao R; Zhu Y
    Math Biosci Eng; 2022 May; 19(7):7388-7409. PubMed ID: 35730312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending the DIDEO ontology to include entities from the natural product drug interaction domain of discourse.
    Judkins J; Tay-Sontheimer J; Boyce RD; Brochhausen M
    J Biomed Semantics; 2018 May; 9(1):15. PubMed ID: 29743102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method exploiting syntactic patterns and the UMLS semantics for aligning biomedical ontologies: the case of OBO disease ontologies.
    Marquet G; Mosser J; Burgun A
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S353-61. PubMed ID: 17517532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality assurance and enrichment of biological and biomedical ontologies and terminologies.
    Agrawal A; Cui L
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 10):301. PubMed ID: 33319696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNOMED CT standard ontology based on the ontology for general medical science.
    El-Sappagh S; Franda F; Ali F; Kwak KS
    BMC Med Inform Decis Mak; 2018 Aug; 18(1):76. PubMed ID: 30170591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the interoperability of biomedical ontologies with compound alignments.
    Oliveira D; Pesquita C
    J Biomed Semantics; 2018 Jan; 9(1):1. PubMed ID: 29316968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.