These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33319775)

  • 1. Uniform spatial pooling explains topographic organization and deviation from receptive-field scale invariance in primate V1.
    Chen Y; Ko H; Zemelman BV; Seidemann E; Nauhaus I
    Nat Commun; 2020 Dec; 11(1):6390. PubMed ID: 33319775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Receptive Field Tiling in Primate V1.
    Nauhaus I; Nielsen KJ; Callaway EM
    Neuron; 2016 Aug; 91(4):893-904. PubMed ID: 27499086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
    Benvenuti G; Chen Y; Ramakrishnan C; Deisseroth K; Geisler WS; Seidemann E
    Neuron; 2018 Dec; 100(6):1504-1512.e4. PubMed ID: 30392796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
    Li X; Sun C; Shi L
    Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.
    Gharat A; Baker CL
    J Neurosci; 2017 Jan; 37(4):998-1013. PubMed ID: 28123031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circuits for local and global signal integration in primary visual cortex.
    Angelucci A; Levitt JB; Walton EJ; Hupe JM; Bullier J; Lund JS
    J Neurosci; 2002 Oct; 22(19):8633-46. PubMed ID: 12351737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings.
    Kagan I; Gur M; Snodderly DM
    J Neurophysiol; 2002 Nov; 88(5):2557-74. PubMed ID: 12424294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex.
    Nauhaus I; Nielsen KJ; Disney AA; Callaway EM
    Nat Neurosci; 2012 Dec; 15(12):1683-90. PubMed ID: 23143516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contextual modulation in primary visual cortex of macaques.
    Rossi AF; Desimone R; Ungerleider LG
    J Neurosci; 2001 Mar; 21(5):1698-709. PubMed ID: 11222659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
    Rosa MG; Casagrande VA; Preuss T; Kaas JH
    J Neurophysiol; 1997 Jun; 77(6):3193-217. PubMed ID: 9212268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relation between receptive field structure and stimulus selectivity in the tree shrew primary visual cortex.
    Veit J; Bhattacharyya A; Kretz R; Rainer G
    Cereb Cortex; 2014 Oct; 24(10):2761-71. PubMed ID: 23696278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-invariance of receptive field properties in primary visual cortex.
    Teichert T; Wachtler T; Michler F; Gail A; Eckhorn R
    BMC Neurosci; 2007 Jun; 8():38. PubMed ID: 17562009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2005 Nov; 22(10):2635-43. PubMed ID: 16307605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma Frequency and the Spatial Tuning of Primary Visual Cortex.
    Gregory S; Fusca M; Rees G; Schwarzkopf DS; Barnes G
    PLoS One; 2016; 11(6):e0157374. PubMed ID: 27362265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial receptive field organization of macaque V4 neurons.
    Pollen DA; Przybyszewski AW; Rubin MA; Foote W
    Cereb Cortex; 2002 Jun; 12(6):601-16. PubMed ID: 12003860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive field size in V1 neurons limits acuity for perceiving disparity modulation.
    Nienborg H; Bridge H; Parker AJ; Cumming BG
    J Neurosci; 2004 Mar; 24(9):2065-76. PubMed ID: 14999058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing Detail along the Visual Hierarchy: Neural Clustering Preserves Acuity from V1 to V4.
    Lu Y; Yin J; Chen Z; Gong H; Liu Y; Qian L; Li X; Liu R; Andolina IM; Wang W
    Neuron; 2018 Apr; 98(2):417-428.e3. PubMed ID: 29606580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surround suppression by high spatial frequency stimuli in the cat primary visual cortex.
    Osaki H; Naito T; Sadakane O; Okamoto M; Sato H
    Eur J Neurosci; 2011 Mar; 33(5):923-32. PubMed ID: 21255126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.