These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33320147)
1. The recovery of nano-sized carbon black filler structure and its contribution to stress recovery in rubber nanocomposites. Chen L; Wu L; Song L; Xia Z; Lin Y; Chen W; Li L Nanoscale; 2020 Dec; 12(48):24527-24542. PubMed ID: 33320147 [TBL] [Abstract][Full Text] [Related]
2. Comparative Investigation of Nano-Sized Silica and Micrometer-Sized Calcium Carbonate on Structure and Properties of Natural Rubber Composites. Hayeemasae N; Soontaranon S; Masa A Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674971 [TBL] [Abstract][Full Text] [Related]
3. Comparative Structure-Property Relationship between Nanoclay and Cellulose Nanofiber Reinforced Natural Rubber Nanocomposites. Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145891 [TBL] [Abstract][Full Text] [Related]
4. Chain orientation in natural rubber, Part II: 2H-NMR study. Rault J; Marchal J; Judeinstein P; Albouy PA Eur Phys J E Soft Matter; 2006 Nov; 21(3):243-61. PubMed ID: 17235471 [TBL] [Abstract][Full Text] [Related]
5. In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy. Liang X; Kojima T; Ito M; Amino N; Liu H; Koishi M; Nakajima K ACS Appl Mater Interfaces; 2023 Mar; 15(9):12414-12422. PubMed ID: 36852783 [TBL] [Abstract][Full Text] [Related]
6. Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites. Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904515 [TBL] [Abstract][Full Text] [Related]
7. Influence of Silane Coupling Agents on Filler Network Structure and Stress-Induced Particle Rearrangement in Elastomer Nanocomposites. Presto D; Meyerhofer J; Kippenbrock G; Narayanan S; Ilavsky J; Moctezuma S; Sutton M; Foster MD ACS Appl Mater Interfaces; 2020 Oct; 12(42):47891-47901. PubMed ID: 32933248 [TBL] [Abstract][Full Text] [Related]
8. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Robertson CG; Hardman NJ Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673094 [TBL] [Abstract][Full Text] [Related]
10. Study on the Use of CTAB-Treated Illite as an Alternative Filler for Natural Rubber. Wang Z; Wang S; Yu X; Zhang H; Yan S ACS Omega; 2021 Jul; 6(29):19017-19025. PubMed ID: 34337240 [TBL] [Abstract][Full Text] [Related]
11. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler- Part I: Structure, Morphology, and Rheological Effects during Vulcanization. Lubura J; Kobera L; Abbrent S; Pavlova E; Strachota B; Bera O; Pavličević J; Ikonić B; Kojić P; Strachota A Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904417 [TBL] [Abstract][Full Text] [Related]
13. Effect of the Topology of Carbon-Based Nanofillers on the Filler Networks and Gas Barrier Properties of Rubber Composites. Wen S; Zhang R; Xu Z; Zheng L; Liu L Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260735 [TBL] [Abstract][Full Text] [Related]
14. Common Origin of Filler Network Related Contributions to Reinforcement and Dissipation in Rubber Composites. Nagaraja SM; Henning S; Ilisch S; Beiner M Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372137 [TBL] [Abstract][Full Text] [Related]
15. Preparation and mechanical properties of rubber composites reinforced with carbon nanohorns. Isshiki T; Hashimoto M; Morii M; Ota Y; Kaneda K; Takahashi H; Yudasaka M; Iijima S; Okino F J Nanosci Nanotechnol; 2010 Jun; 10(6):3810-4. PubMed ID: 20355372 [TBL] [Abstract][Full Text] [Related]
16. Impact of uniaxial tensile fatigue on the evolution of microscopic and mesoscopic structure of carbon black filled natural rubber. Sun C; Du Z; Nagarajan S; Zhao H; Wen S; Zhao S; Zhang P; Zhang L R Soc Open Sci; 2019 Feb; 6(2):181883. PubMed ID: 30891299 [TBL] [Abstract][Full Text] [Related]
17. Strong Strain Sensing Performance of Natural Rubber Nanocomposites. Natarajan TS; Eshwaran SB; Stöckelhuber KW; Wießner S; Pötschke P; Heinrich G; Das A ACS Appl Mater Interfaces; 2017 Feb; 9(5):4860-4872. PubMed ID: 28094912 [TBL] [Abstract][Full Text] [Related]
18. Study on lignin amination for lignin/SiO Qiu J; Yuan S; Xiao H; Liu J; Shen T; Tan Z; Zhuang W; Ying H; Li M; Zhu C Int J Biol Macromol; 2023 Apr; 233():123547. PubMed ID: 36740123 [TBL] [Abstract][Full Text] [Related]
19. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Jiang C; Bo J; Xiao X; Zhang S; Wang Z; Yan G; Wu Y; Wong C; He H Waste Manag; 2020 Feb; 102():732-742. PubMed ID: 31805446 [TBL] [Abstract][Full Text] [Related]
20. Titanium carbide ceramic nanocrystals to enhance the physicochemical properties of natural rubber composites. Jayasinghe JMARB; De Silva RT; de Silva KMN; de Silva RM; Silva VA RSC Adv; 2020 May; 10(33):19290-19299. PubMed ID: 35515424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]