These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 33320152)
1. Plasma membrane H Cogo AJD; Façanha AR; da Silva Teixeira LR; de Souza SB; da Rocha JG; Figueira FF; Eutrópio FJ; Bertolazi AA; de Rezende CE; Krohling CA; Okorokov LA; Cruz C; Ramos AC; Okorokova-Façanha AL Metallomics; 2020 Dec; 12(12):2174-2185. PubMed ID: 33320152 [TBL] [Abstract][Full Text] [Related]
2. Aluminum impairs morphogenic transition and stimulates H(+) transport mediated by the plasma membrane ATPase of Yarrowia lipolytica. Lobão FA; Façanha AR; Okorokov LA; Dutra KR; Okorokova-Façanha AL FEMS Microbiol Lett; 2007 Sep; 274(1):17-23. PubMed ID: 17663703 [TBL] [Abstract][Full Text] [Related]
3. Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. Martinez-Vazquez A; Gonzalez-Hernandez A; Domínguez A; Rachubinski R; Riquelme M; Cuellar-Mata P; Guzman JC PLoS One; 2013; 8(6):e66790. PubMed ID: 23826133 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. Morín M; Monteoliva L; Insenser M; Gil C; Domínguez A J Mass Spectrom; 2007 Nov; 42(11):1453-62. PubMed ID: 17960580 [TBL] [Abstract][Full Text] [Related]
5. The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast Yarrowia lipolytica. Shu T; He XY; Chen JW; Mao YS; Gao XD mSphere; 2021 May; 6(3):. PubMed ID: 34011684 [TBL] [Abstract][Full Text] [Related]
6. Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. Pomraning KR; Bredeweg EL; Kerkhoven EJ; Barry K; Haridas S; Hundley H; LaButti K; Lipzen A; Yan M; Magnuson JK; Simmons BA; Grigoriev IV; Nielsen J; Baker SE mSphere; 2018 Dec; 3(6):. PubMed ID: 30518677 [TBL] [Abstract][Full Text] [Related]
7. The TORC1-Sch9-Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeast Yarrowia lipolytica. Liang SH; Wu H; Wang RR; Wang Q; Shu T; Gao XD Mol Microbiol; 2017 May; 104(4):553-567. PubMed ID: 28188651 [TBL] [Abstract][Full Text] [Related]
8. Metabolic modulation of transport coupling ratio in yeast plasma membrane H(+)-ATPase. Venema K; Palmgren MG J Biol Chem; 1995 Aug; 270(33):19659-67. PubMed ID: 7642655 [TBL] [Abstract][Full Text] [Related]
9. The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. Zhao XF; Li M; Li YQ; Chen XD; Gao XD FEMS Yeast Res; 2013 Feb; 13(1):50-61. PubMed ID: 23067114 [TBL] [Abstract][Full Text] [Related]
10. Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress tolerance. Zhang X; Wu H; Chen L; Li Y; Wan X J Integr Plant Biol; 2019 Feb; 61(2):155-167. PubMed ID: 30039548 [TBL] [Abstract][Full Text] [Related]
11. Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica. Li M; Li YQ; Zhao XF; Gao XD FEMS Yeast Res; 2014 May; 14(3):451-63. PubMed ID: 24382266 [TBL] [Abstract][Full Text] [Related]
12. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification. Fernandes AR; Sá-Correia I Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007 [TBL] [Abstract][Full Text] [Related]
13. Dual regulation of proton- and sodium-coupled phosphate transport systems in the Yarrowia lipolytica yeast by extracellular phosphate and pH. Zvyagilskaya R; Persson BL IUBMB Life; 2003 Mar; 55(3):151-4. PubMed ID: 12822892 [TBL] [Abstract][Full Text] [Related]
15. Trypanosoma cruzi H+-ATPase 1 (TcHA1) and 2 (TcHA2) genes complement yeast mutants defective in H+ pumps and encode plasma membrane P-type H+-ATPases with different enzymatic properties. Luo S; Scott DA; Docampo R J Biol Chem; 2002 Nov; 277(46):44497-506. PubMed ID: 12221074 [TBL] [Abstract][Full Text] [Related]
16. The two major types of plant plasma membrane H+-ATPases show different enzymatic properties and confer differential pH sensitivity of yeast growth. Luo H; Morsomme P; Boutry M Plant Physiol; 1999 Feb; 119(2):627-34. PubMed ID: 9952459 [TBL] [Abstract][Full Text] [Related]
17. Copper Ion Mediates Yeast-to-Hypha Transition in Ran M; Zhao G; Jiao L; Gu Z; Yang K; Wang L; Cao X; Xu L; Yan J; Yan Y; Xie S; Yang M J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836363 [TBL] [Abstract][Full Text] [Related]
18. Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica. Szabo R; Stofaníková V FEMS Microbiol Lett; 2002 Jan; 206(1):45-50. PubMed ID: 11786255 [TBL] [Abstract][Full Text] [Related]
19. Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast. Plant PJ; Manolson MF; Grinstein S; Demaurex N J Biol Chem; 1999 Dec; 274(52):37270-9. PubMed ID: 10601292 [TBL] [Abstract][Full Text] [Related]
20. ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. Blanchin-Roland S; Costa GD; Gaillardin C Microbiology (Reading); 2005 Nov; 151(Pt 11):3627-3637. PubMed ID: 16272384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]