These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33320432)

  • 1. De Novo Protein Design Using the Blueprint Builder in Rosetta.
    An L; Lee GR
    Curr Protoc Protein Sci; 2020 Dec; 102(1):e116. PubMed ID: 33320432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakthroughs in computational design methods open up new frontiers for de novo protein engineering.
    Meinen BA; Bahl CD
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33884420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting native-like properties in combinatorial libraries of de novo proteins.
    Roy S; Helmer KJ; Hecht MH
    Fold Des; 1997; 2(2):89-92. PubMed ID: 9135980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The advent of de novo proteins for cancer immunotherapy.
    Quijano-Rubio A; Ulge UY; Walkey CD; Silva DA
    Curr Opin Chem Biol; 2020 Jun; 56():119-128. PubMed ID: 32371023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in de novo protein design: Principles, methods, and applications.
    Pan X; Kortemme T
    J Biol Chem; 2021; 296():100558. PubMed ID: 33744284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.
    Cunha KC; Rusu VH; Viana IF; Marques ET; Dhalia R; Lins RD
    Biopolymers; 2015 Jun; 103(6):351-61. PubMed ID: 25677872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins.
    Cummins MC; Tripathy A; Sondek J; Kuhlman B
    Protein Sci; 2023 Aug; 32(8):e4713. PubMed ID: 37368504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of structurally distinct proteins using strategies inspired by evolution.
    Jacobs TM; Williams B; Williams T; Xu X; Eletsky A; Federizon JF; Szyperski T; Kuhlman B
    Science; 2016 May; 352(6286):687-90. PubMed ID: 27151863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rosetta:MSF: a modular framework for multi-state computational protein design.
    Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R
    PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of Using De Novo Design for Generating Diverse Functional Food Enzymes.
    Wang X; Xu K; Tan Y; Liu S; Zhou J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo design of a homo-trimeric amantadine-binding protein.
    Park J; Selvaraj B; McShan AC; Boyken SE; Wei KY; Oberdorfer G; DeGrado W; Sgourakis NG; Cuneo MJ; Myles DA; Baker D
    Elife; 2019 Dec; 8():. PubMed ID: 31854299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and optimization of enzymatic activity in a de novo β-barrel scaffold.
    Kipnis Y; Chaib AO; Vorobieva AA; Cai G; Reggiano G; Basanta B; Kumar E; Mittl PRE; Hilvert D; Baker D
    Protein Sci; 2022 Nov; 31(11):e4405. PubMed ID: 36305767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.
    Okura H; Mihara H; Takahashi T
    Protein Eng Des Sel; 2013 Oct; 26(10):705-11. PubMed ID: 24046439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in computational protein design.
    Pantazes RJ; Grisewood MJ; Maranas CD
    Curr Opin Struct Biol; 2011 Aug; 21(4):467-72. PubMed ID: 21600758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.