BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 33320534)

  • 1. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices.
    Lin J; Malakooti MH; Sodano HA
    ACS Appl Mater Interfaces; 2020 May; 12(19):21871-21882. PubMed ID: 32316731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer Peptide-PVDF Composite Films for High-Performance Energy Harvesting.
    Patranabish S; Dhawan S; Haridas V; Sinha A
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200493. PubMed ID: 35866581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing Architecting β-PVDF Reservoirs for Preferential ZnO Epitaxial Growth Toward Advanced Piezoelectric Energy Harvesting.
    He L; Liu X; Han C; Wang D; Wang Q; Deng X; Zhang C
    Small Methods; 2024 Feb; ():e2301707. PubMed ID: 38343185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications.
    Zhang S; Zhang B; Zhang J; Ren K
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32242-32250. PubMed ID: 34197070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the electrostatic effects of stretched PVDF films and nanofibers.
    Lin Y; Zhang Y; Zhang F; Zhang M; Li D; Deng G; Guan L; Dong M
    Nanoscale Res Lett; 2021 May; 16(1):79. PubMed ID: 33939029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Phase Crystallinity, Printability, and Piezoelectric Characteristics of Polyvinylidene Fluoride (PVDF)/Poly(methyl methacrylate) (PMMA)/Cyclopentyl-Polyhedral Oligomeric Silsesquioxane (Cp-POSS) Melt-Compounded Blends.
    Edwards TR; Shankar R; Smith PGH; Cross JA; Lequeux ZAB; Kemp LK; Qiang Z; Iacano ST; Morgan SE
    ACS Appl Polym Mater; 2024 May; 6(10):5803-5813. PubMed ID: 38807951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting.
    Szewczyk PK; Gradys A; Kim SK; Persano L; Marzec M; Kryshtal A; Busolo T; Toncelli A; Pisignano D; Bernasik A; Kar-Narayan S; Sajkiewicz P; Stachewicz U
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13575-13583. PubMed ID: 32090543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic surfactant assisted enhancement of dielectric and piezoelectric properties of PVDF nanofibers for energy harvesting application.
    Ekbote GS; Khalifa M; Mahendran A; Anandhan S
    Soft Matter; 2021 Mar; 17(8):2215-2222. PubMed ID: 33464271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films.
    Fortunato M; Chandraiahgari CR; De Bellis G; Ballirano P; Sarto F; Tamburrano A; Sarto MS
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30235819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.
    Zabek D; Seunarine K; Spacie C; Bowen C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9161-9167. PubMed ID: 28222264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corona-Poled Porous Electrospun Films of Gram-Scale Y-Doped ZnO and PVDF Composites for Piezoelectric Nanogenerators.
    Yi J; Song Y; Zhang S; Cao Z; Li C; Xiong C
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays.
    Ikei A; Wissman J; Sampath K; Yesner G; Qadri SN
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.