BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33320544)

  • 1. Photodynamic Nanophotosensitizers: Promising Materials for Tumor Theranostics.
    Keerthiga R; Zhao Z; Pei D; Fu A
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5474-5485. PubMed ID: 33320544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
    Lim CK; Heo J; Shin S; Jeong K; Seo YH; Jang WD; Park CR; Park SY; Kim S; Kwon IC
    Cancer Lett; 2013 Jul; 334(2):176-87. PubMed ID: 23017942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy.
    Duan X; Jiang XF; Hu D; Liu P; Li S; Huang F; Ma Y; Xu QH; Cao Y
    Nanoscale; 2018 Dec; 11(1):185-192. PubMed ID: 30525149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.
    Li S; Shen X; Xu QH; Cao Y
    Nanoscale; 2019 Nov; 11(41):19551-19560. PubMed ID: 31578535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy.
    Yan J; Gao T; Lu Z; Yin J; Zhang Y; Pei R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27749-27773. PubMed ID: 34110790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells.
    Shen X; Li S; Li L; Yao SQ; Xu QH
    Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of fluorinated nanophotosensitizers with self-supplied oxygen for efficient photodynamic therapy.
    Ping JT; You FT; Geng ZX; Peng HS
    Nanotechnology; 2019 Aug; 30(34):345207. PubMed ID: 31035278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers.
    Chang Y; Li X; Zhang L; Xia L; Liu X; Li C; Zhang Y; Tu L; Xue B; Zhao H; Zhang H; Kong X
    Sci Rep; 2017 Mar; 7():45633. PubMed ID: 28361967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Developing Photosensitizers for Photodynamic Cancer Therapy.
    Chen C; Wang J; Li X; Liu X; Han X
    Comb Chem High Throughput Screen; 2017; 20(5):414-422. PubMed ID: 28088891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic nanoparticles for enhanced photodynamic cancer therapy.
    Cheng SH; Lo LW
    Curr Drug Discov Technol; 2011 Sep; 8(3):250-68. PubMed ID: 21644924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy.
    Ma Z; Hu P; Guo C; Wang D; Zhang X; Chen M; Wang Q; Sun M; Zeng P; Lu F; Sun L; She L; Zhang H; Yao J; Yang F
    Int J Nanomedicine; 2019; 14():5527-5540. PubMed ID: 31413561
    [No Abstract]   [Full Text] [Related]  

  • 14. In Vivo Bioimaging and Photodynamic Therapy Based on Two-Photon Fluorescent Conjugated Polymers Containing Dibenzothiophene-
    Hu L; Chen Z; Liu Y; Tian B; Guo T; Liu R; Wang C; Ying L
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57281-57289. PubMed ID: 33296171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New photosensitizers for photodynamic therapy.
    Abrahamse H; Hamblin MR
    Biochem J; 2016 Feb; 473(4):347-64. PubMed ID: 26862179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-band absorption assisted single-photon frequency upconversion luminescent nanophotosensitizer for 808 nm light triggered photodynamic immunotherapy of cancer.
    Yu H; Wang Q; Zhang X; Tiemuer A; Wang J; Zhang Y; Sun X; Liu Y
    Biomater Sci; 2023 Mar; 11(6):2167-2176. PubMed ID: 36734805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical imaging and pH-awakening therapy of deep tissue cancer based on specific upconversion nanophotosensitizers.
    Feng Y; Chen H; Wu Y; Que I; Tamburini F; Baldazzi F; Chang Y; Zhang H
    Biomaterials; 2020 Feb; 230():119637. PubMed ID: 31776018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy.
    Qi T; Chen B; Wang Z; Du H; Liu D; Yin Q; Liu B; Zhang Q; Wang Y
    Biomaterials; 2019 Aug; 213():119219. PubMed ID: 31132647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor microenvironment-activated nanosystems with selenophenol substituted BODIPYs as photosensitizers for photodynamic therapy.
    Gao W; Li M; Xu G; Wang R; Shi B; Zhu T; Gao J; Gu X; Shi P; Zhao C
    Bioorg Med Chem Lett; 2020 Jan; 30(2):126854. PubMed ID: 31859157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NaYbF
    Zhang JY; Chen S; Wang P; Jiang DJ; Ban DX; Zhong NZ; Jiang GC; Li H; Hu Z; Xiao JR; Zhang ZG; Cao WW
    Nanoscale; 2017 Feb; 9(8):2706-2710. PubMed ID: 28191573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.