These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33320572)

  • 1. Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect.
    Huang C; Yang G; Zhou S; Luo E; Pan J; Bao C; Liu X
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5758-5770. PubMed ID: 33320572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect.
    Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y
    Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.
    Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S
    Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering.
    Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z
    Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway.
    Cheng X; Cheng G; Xing X; Yin C; Cheng Y; Zhou X; Jiang S; Tao F; Deng H; Li Z
    J Control Release; 2020 Mar; 319():234-245. PubMed ID: 31899269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core-Shell Nanofibers for Improving Bone Regeneration.
    Cheng G; Yin C; Tu H; Jiang S; Wang Q; Zhou X; Xing X; Xie C; Shi X; Du Y; Deng H; Li Z
    ACS Nano; 2019 Jun; 13(6):6372-6382. PubMed ID: 31184474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications.
    Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ
    Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering.
    Cheng Y; Ramos D; Lee P; Liang D; Yu X; Kumbar SG
    J Biomed Nanotechnol; 2014 Feb; 10(2):287-98. PubMed ID: 24738337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering.
    Su Y; Su Q; Liu W; Lim M; Venugopal JR; Mo X; Ramakrishna S; Al-Deyab SS; El-Newehy M
    Acta Biomater; 2012 Feb; 8(2):763-71. PubMed ID: 22100346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration.
    Abdollahi Boraei SB; Nourmohammadi J; Bakhshandeh B; Dehghan MM; Gholami H; Gonzalez Z; Sanchez-Herencia AJ; Ferrari B
    Biomed Mater; 2021 Feb; 16(2):025009. PubMed ID: 33434897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
    Singh R; Ahmed F; Polley P; Giri J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core and biological motif of self-assembling peptide nanofiber induce a stronger electrostatic interaction than BMP2 with BMP2 receptor 1A.
    Tavakol S; Rasoulian B; Ramezani F; Hoveizi E; Tavakol B; Rezayat SM
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():148-158. PubMed ID: 31029307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Adenosine-Loaded Electrospun Nanofibers and Their Application in Bone Regeneration.
    Zhong L; Hu D; Qu Y; Peng J; Huang K; Lei M; Wu T; Xiao Y; Gu Y; Qian Z
    J Biomed Nanotechnol; 2019 May; 15(5):857-877. PubMed ID: 30890220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering.
    Ding H; Hu Y; Cheng Y; Yang H; Gong Y; Liang S; Wei Y; Huang D
    ACS Appl Bio Mater; 2021 Aug; 4(8):6167-6174. PubMed ID: 35006871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dually optimized polycaprolactone/collagen I microfiber scaffolds with stem cell capture and differentiation-inducing abilities promote bone regeneration.
    Chi H; Jiang A; Wang X; Chen G; Song C; Prajapati RK; Li A; Li Z; Li J; Zhang Z; Ji Y; Yan J
    J Mater Chem B; 2019 Nov; 7(44):7052-7064. PubMed ID: 31641711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration.
    da Silva TN; Gonçalves RP; Rocha CL; Archanjo BS; Barboza CAG; Pierre MBR; Reynaud F; de Souza Picciani PH
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():602-612. PubMed ID: 30678947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.