BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33320620)

  • 1. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization.
    Kwon J; Cho H
    Commun Biol; 2022 Nov; 5(1):1229. PubMed ID: 36369514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.
    Minary-Jolandan M; Yu MF
    ACS Nano; 2009 Jul; 3(7):1859-63. PubMed ID: 19505115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peritubular dentin lacks piezoelectricity.
    Habelitz S; Rodriguez BJ; Marshall SJ; Marshall GW; Kalinin SV; Gruverman A
    J Dent Res; 2007 Sep; 86(9):908-11. PubMed ID: 17720865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric properties of aligned collagen membranes.
    Denning D; Paukshto MV; Habelitz S; Rodriguez BJ
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):284-92. PubMed ID: 24030958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils.
    Harnagea C; Vallières M; Pfeffer CP; Wu D; Olsen BR; Pignolet A; Légaré F; Gruverman A
    Biophys J; 2010 Jun; 98(12):3070-7. PubMed ID: 20550920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical Coupling in Collagen Measured under Increasing Relative Humidity.
    Bazaid A; Zhang F; Zhang Q; Neumayer S; Denning D; Habelitz S; Marina Ferreira A; Rodriguez BJ
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity.
    Xie S; Gannepalli A; Chen QN; Liu Y; Zhou Y; Proksch R; Li J
    Nanoscale; 2012 Jan; 4(2):408-13. PubMed ID: 22101512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity.
    Minary-Jolandan M; Yu MF
    Nanotechnology; 2009 Feb; 20(8):085706. PubMed ID: 19417467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric Yield of Single Electrospun Poly(acrylonitrile) Ultrafine Fibers Studied by Piezoresponse Force Microscopy and Numerical Simulations.
    Montorsi M; Zavagna L; Scarpelli L; Azimi B; Capaccioli S; Danti S; Labardi M
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric Tensor of Collagen Fibrils Determined at the Nanoscale.
    Denning D; Kilpatrick JI; Fukada E; Zhang N; Habelitz S; Fertala A; Gilchrist MD; Zhang Y; Tofail SAM; Rodriguez BJ
    ACS Biomater Sci Eng; 2017 Jun; 3(6):929-935. PubMed ID: 33429565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Piezoelectric Properties of Doped Biomolecular Crystals.
    Kholkin A; Alikin D; Shur V; Dishon S; Ehre D; Lubomirsky I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band Excitation Piezoresponse Force Microscopy Adapted for Weak Ferroelectrics: On-the-Fly Tuning of the Central Band Frequency.
    Spiridonov M; Chouprik A; Mikheev V; Markeev AM; Negrov D
    Microsc Microanal; 2021 Apr; 27(2):326-336. PubMed ID: 33750509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.
    Nudelman F; Pieterse K; George A; Bomans PH; Friedrich H; Brylka LJ; Hilbers PA; de With G; Sommerdijk NA
    Nat Mater; 2010 Dec; 9(12):1004-9. PubMed ID: 20972429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale piezoelectric effect of biodegradable PLA-based composite fibers by piezoresponse force microscopy.
    Zheng T; Yue Z; Wallace GG; Du Y; Higgins MJ
    Nanotechnology; 2020 Sep; 31(37):375708. PubMed ID: 32460265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative probe for in-plane piezoelectric coupling in 2D materials.
    Yarajena SS; Biswas R; Raghunathan V; Naik AK
    Sci Rep; 2021 Mar; 11(1):7066. PubMed ID: 33782418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.