BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33320660)

  • 1. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA.
    Bag S; Aggarwal A; Maiti PK
    J Phys Chem A; 2020 Sep; 124(38):7658-7664. PubMed ID: 32876443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Prediction of DNA Charge Transport.
    Korol R; Segal D
    J Phys Chem B; 2019 Apr; 123(13):2801-2811. PubMed ID: 30865456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism.
    Aggarwal A; Bag S; Venkatramani R; Jain M; Maiti PK
    Nanoscale; 2020 Sep; 12(36):18750-18760. PubMed ID: 32970051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic couplings in DNA pi-stacks: multistate effects.
    Voityuk AA
    J Phys Chem B; 2005 Sep; 109(38):17917-21. PubMed ID: 16853299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Approach to Calculate Electronic Couplings between Quasi-diabatic Molecular Orbitals: The Case of DNA.
    Bai X; Guo X; Wang L
    J Phys Chem Lett; 2021 Oct; 12(42):10457-10464. PubMed ID: 34672582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of electronic coupling for excess electron transfer in DNA.
    Voityuk AA
    J Chem Phys; 2005 Jul; 123(3):34903. PubMed ID: 16080759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study.
    Voityuk AA
    J Chem Phys; 2008 Mar; 128(11):115101. PubMed ID: 18361616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties.
    Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B
    J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics.
    Farahvash A; Lee CK; Sun Q; Shi L; Willard AP
    J Chem Phys; 2020 Aug; 153(7):074111. PubMed ID: 32828098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers.
    Madjet ME; Abdurahman A; Renger T
    J Phys Chem B; 2006 Aug; 110(34):17268-81. PubMed ID: 16928026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting RNA secondary structure by a neural network: what features may be learned?
    Grigorashvili EI; Chervontseva ZS; Gelfand MS
    PeerJ; 2022; 10():e14335. PubMed ID: 36530406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Approach to Constructing a Deep Feedforward Neural Network for Prediction of Electronic Coupling Elements in Molecular Materials.
    Çaylak O; Yaman A; Baumeier B
    J Chem Theory Comput; 2019 Mar; 15(3):1777-1784. PubMed ID: 30753071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinate-Free and Low-Order Scaling Machine Learning Model for Atomic Partial Charge Prediction for Any Size of Molecules.
    Xie Q; Horsfield AP
    J Chem Inf Model; 2024 Jun; 64(11):4419-4425. PubMed ID: 38757521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Structural Representation in the Performance of a Deep Neural Network for X-Ray Spectroscopy.
    Madkhali MMM; Rankine CD; Penfold TJ
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internucleotide J-couplings and chemical shifts of the N-H···N hydrogen-bonds in the radiation-damaged guanine-cytosine base pairs.
    Li H; Zhang L; Han L; Sun W; Bu Y
    J Comput Chem; 2011 Apr; 32(6):1159-69. PubMed ID: 21387342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse graph self-attention for target-directed atomic importance estimation.
    Na GS; Kim HW
    Neural Netw; 2021 Jan; 133():1-10. PubMed ID: 33080458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.