These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33320680)

  • 1. Modeling Auger Processes with Nonadiabatic Molecular Dynamics.
    Zhou G; Lu G; Prezhdo OV
    Nano Lett; 2021 Jan; 21(1):756-761. PubMed ID: 33320680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auger-mediated electron relaxation is robust to deep hole traps: time-domain ab initio study of CdSe quantum dots.
    Trivedi DJ; Wang L; Prezhdo OV
    Nano Lett; 2015 Mar; 15(3):2086-91. PubMed ID: 25639836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-Conserving Surface Hopping for Auger Processes.
    Gumber S; Prezhdo OV
    J Chem Theory Comput; 2024 Jul; 20(13):5408-5417. PubMed ID: 38902855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites.
    Li W; She Y; Vasenko AS; Prezhdo OV
    Nanoscale; 2021 Jun; 13(23):10239-10265. PubMed ID: 34031683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking Phonon Bottlenecks through Efficient Auger Processes in Perovskite Nanocrystals.
    Baker H; Perez CM; Sonnichsen C; Strandell D; Prezhdo OV; Kambhampati P
    ACS Nano; 2023 Feb; 17(4):3913-3920. PubMed ID: 36796027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auger Recombination and Carrier-Lattice Thermalization in Semiconductor Quantum Dots under Intense Excitation.
    Yue L; Li J; Qi Y; Chen J; Wang X; Cao J
    Nano Lett; 2023 Apr; 23(7):2578-2585. PubMed ID: 36972411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Phonon-Assisted Auger Recombination and Multiple Exciton Generation in Semiconductor Quantum Dots Revealed by Temperature-Dependent Phonon Dynamics.
    Hyeon-Deuk K; Kobayashi Y; Tamai N
    J Phys Chem Lett; 2014 Jan; 5(1):99-105. PubMed ID: 26276187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Aspect Ratio on Multiparticle Auger Recombination in Single-Walled Carbon Nanotubes: Time Domain Atomistic Simulation.
    Pal S; Casanova D; Prezhdo OV
    Nano Lett; 2018 Jan; 18(1):58-63. PubMed ID: 29190106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Analysis of Auger-Assisted Electron Transfer.
    Hyeon-Deuk K; Kim J; Prezhdo OV
    J Phys Chem Lett; 2015 Jan; 6(2):244-9. PubMed ID: 26263457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr
    Boehme SC; Brinck ST; Maes J; Yazdani N; Zapata F; Chen K; Wood V; Hodgkiss JM; Hens Z; Geiregat P; Infante I
    Nano Lett; 2020 Mar; 20(3):1819-1829. PubMed ID: 32049539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-domain ab initio study of Auger and phonon-assisted auger processes in a semiconductor quantum dot.
    Hyeon-Deuk K; Prezhdo OV
    Nano Lett; 2011 Apr; 11(4):1845-50. PubMed ID: 21452839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-Suppressed Auger Scattering of Charge Carriers in Defective Two-Dimensional Transition Metal Dichalcogenides.
    Li L; Lin MF; Zhang X; Britz A; Krishnamoorthy A; Ma R; Kalia RK; Nakano A; Vashishta P; Ajayan P; Hoffmann MC; Fritz DM; Bergmann U; Prezhdo OV
    Nano Lett; 2019 Sep; 19(9):6078-6086. PubMed ID: 31434484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots.
    Wang J; Wang L; Yu S; Ding T; Xiang D; Wu K
    Nat Commun; 2021 Jan; 12(1):550. PubMed ID: 33483503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Influence of Ti Adhesion Layer on Electron-Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics.
    Zhou X; Jankowska J; Li L; Giri A; Hopkins PE; Prezhdo OV
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43343-43351. PubMed ID: 29135220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS
    Wei Y; Li L; Fang W; Long R; Prezhdo OV
    Nano Lett; 2017 Jul; 17(7):4038-4046. PubMed ID: 28586230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.