These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33320690)
21. Pressure and temperature dependence of the reaction of vinyl radical with alkenes III: measured rates and predicted product distributions for vinyl + butene. Goldsmith CF; Ismail H; Green WH J Phys Chem A; 2009 Nov; 113(47):13357-71. PubMed ID: 19624112 [TBL] [Abstract][Full Text] [Related]
22. Pressure dependence and branching ratios in the decomposition of 1-pentyl radicals: shock tube experiments and master equation modeling. Awan IA; Burgess DR; Manion JA J Phys Chem A; 2012 Mar; 116(11):2895-910. PubMed ID: 22356429 [TBL] [Abstract][Full Text] [Related]
23. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Somers KP; Simmie JM; Gillespie F; Conroy C; Black G; Metcalfe WK; Battin-Leclerc F; Dirrenberger P; Herbinet O; Glaude PA; Dagaut P; Togbé C; Yasunaga K; Fernandes RX; Lee C; Tripathi R; Curran HJ Combust Flame; 2013 Nov; 160(11):2291-318. PubMed ID: 24273333 [TBL] [Abstract][Full Text] [Related]
24. Theoretical Study of the Decomposition Reactions of 2-Vinylfuran. He W; Zhang Q; Chen K; Nie Y; Li Y; Zhu L; Shen K ACS Omega; 2024 Apr; 9(17):19063-19070. PubMed ID: 38708254 [TBL] [Abstract][Full Text] [Related]
25. Thermal decomposition of methyl butanoate: ab initio study of a biodiesel fuel surrogate. Huynh LK; Violi A J Org Chem; 2008 Jan; 73(1):94-101. PubMed ID: 18052190 [TBL] [Abstract][Full Text] [Related]
26. Kinetic modeling of methyl butanoate in shock tube. Huynh LK; Lin KC; Violi A J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670 [TBL] [Abstract][Full Text] [Related]
27. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies. Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B J Phys Chem A; 2010 Sep; 114(35):9425-39. PubMed ID: 20715882 [TBL] [Abstract][Full Text] [Related]
28. Reaction Kinetics of Hydrogen Atom Abstraction from C4-C6 Alkenes by the Hydrogen Atom and Methyl Radical. Wang QD; Liu ZW J Phys Chem A; 2018 Jun; 122(23):5202-5210. PubMed ID: 29791159 [TBL] [Abstract][Full Text] [Related]
29. Pressure-Dependent Rate Rules for Intramolecular H-Migration Reactions of Hydroperoxyalkylperoxy Radicals in Low Temperature. Yao Q; Sun XH; Li ZR; Chen FF; Li XY J Phys Chem A; 2017 Apr; 121(16):3001-3018. PubMed ID: 28383903 [TBL] [Abstract][Full Text] [Related]
30. Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates III: Butylbenzene Isomers ( n-, s-, and t-C Belisario-Lara D; Mebel AM; Kaiser RI J Phys Chem A; 2018 Apr; 122(16):3980-4001. PubMed ID: 29608299 [TBL] [Abstract][Full Text] [Related]
31. Investigating the kinetics of the intramolecular H-migration reaction class of methyl-ester peroxy radicals in low-temperature oxidation mechanisms of biodiesel. Li T; Li J; Chen S; Zhu Q; Li Z Phys Chem Chem Phys; 2023 Nov; 25(46):32078-32092. PubMed ID: 37982313 [TBL] [Abstract][Full Text] [Related]
32. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel. Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B J Phys Chem A; 2011 Apr; 115(15):3366-79. PubMed ID: 21446707 [TBL] [Abstract][Full Text] [Related]
33. Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition. Zhou CW; Simmie JM; Pitz WJ; Curran HJ J Phys Chem A; 2016 Sep; 120(36):7037-44. PubMed ID: 27558073 [TBL] [Abstract][Full Text] [Related]
34. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. II: n-Dodecane (n-C Zhao L; Yang T; Kaiser RI; Troy TP; Ahmed M; Ribeiro JM; Belisario-Lara D; Mebel AM J Phys Chem A; 2017 Feb; 121(6):1281-1297. PubMed ID: 28088866 [TBL] [Abstract][Full Text] [Related]
35. An ab initio/Rice-Ramsperger-Kassel-Marcus study of the hydrogen-abstraction reactions of methyl ethers, H(3)COCH(3-x)(CH(3))(x), x = 0-2, by OH; mechanism and kinetics. Zhou CW; Simmie JM; Curran HJ Phys Chem Chem Phys; 2010 Jul; 12(26):7221-33. PubMed ID: 20485775 [TBL] [Abstract][Full Text] [Related]
36. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames. Ruwe L; Moshammer K; Hansen N; Kohse-Höinghaus K Phys Chem Chem Phys; 2018 Apr; 20(16):10780-10795. PubMed ID: 29392266 [TBL] [Abstract][Full Text] [Related]
37. A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400-800 K Temperature Range. Antonov IO; Kwok J; Zádor J; Sheps L J Phys Chem A; 2015 Jul; 119(28):7742-52. PubMed ID: 25860092 [TBL] [Abstract][Full Text] [Related]
38. Ab initio kinetics for thermal decomposition of CH3N•NH2, cis-CH3NHN•H, trans-CH3NHN•H, and C•H2NNH2 radicals. Sun H; Zhang P; Law CK J Phys Chem A; 2012 Aug; 116(33):8419-30. PubMed ID: 22813206 [TBL] [Abstract][Full Text] [Related]
40. An ab initio/rice--Ramsperger--Kassel--Marcus study of the reactions of propenols with OH. Mechanism and kinetics of H abstraction channels. Zhou CW; Mebel AM; Li XY J Phys Chem A; 2009 Oct; 113(40):10667-77. PubMed ID: 19746962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]