These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3332080)

  • 1. Dynamic light scattering methods for biorhelogy.
    Nossal R
    Biorheology; 1987; 24(6):577-84. PubMed ID: 3332080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of rheologically active biological macromolecules by quasielastic light scattering.
    Steiner CA; Litt M; Nossal R
    Biorheology Suppl; 1984; 1():335-46. PubMed ID: 6591994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ca++ on the structure and rheology of canine tracheal mucin.
    Steiner CA; Litt M; Nossal R
    Biorheology; 1984; 21(1-2):235-52. PubMed ID: 6466791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-association of mucin.
    Bromberg LE; Barr DP
    Biomacromolecules; 2000; 1(3):325-34. PubMed ID: 11710120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids.
    Hajjarian Z; Nadkarni SK
    PLoS One; 2013; 8(5):e65014. PubMed ID: 23705028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements.
    Hajjarian Z; Nadkarni SK
    Opt Express; 2014 Mar; 22(6):6349-61. PubMed ID: 24663983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear viscoelasticity of hard sphere colloidal crystals from resonance detected with dynamic light scattering.
    Phan SE; Li M; Russel WB; Zhu J; Chaikin PM; Lant CT
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1988-98. PubMed ID: 11969991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle tracking microrheology of purified gastrointestinal mucins.
    Georgiades P; Pudney PD; Thornton DJ; Waigh TA
    Biopolymers; 2014 Apr; 101(4):366-77. PubMed ID: 23955640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography.
    Montagnon E; Hadj-Henni A; Schmitt C; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):277-87. PubMed ID: 24474134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic light scattering microrheology for soft and living materials.
    Cai PC; Krajina BA; Kratochvil MJ; Zou L; Zhu A; Burgener EB; Bollyky PL; Milla CE; Webber MJ; Spakowitz AJ; Heilshorn SC
    Soft Matter; 2021 Feb; 17(7):1929-1939. PubMed ID: 33427280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clinical use of the determination of mucin concentrations using laser light scattering.
    Rosenhall L; Odeblad E
    Eur J Respir Dis Suppl; 1980; 110():129-40. PubMed ID: 6938379
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of aggregate structure in mercerized cellulose/LiCl.DMAc solution using light scattering and rheological measurements.
    Aono H; Tatsumi D; Matsumoto T
    Biomacromolecules; 2006 Apr; 7(4):1311-7. PubMed ID: 16602754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering.
    Griffiths PC; Cattoz B; Ibrahim MS; Anuonye JC
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):218-22. PubMed ID: 25986588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of particle size variations for laser speckle rheology of materials.
    Hajjarian Z; Nadkarni SK
    Opt Lett; 2015 Mar; 40(5):764-7. PubMed ID: 25723427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials.
    Krajina BA; Tropini C; Zhu A; DiGiacomo P; Sonnenburg JL; Heilshorn SC; Spakowitz AJ
    ACS Cent Sci; 2017 Dec; 3(12):1294-1303. PubMed ID: 29296670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Normal Stress in the Creep Dynamics and Failure of a Biopolymer Gel.
    Pommella A; Cipelletti L; Ramos L
    Phys Rev Lett; 2020 Dec; 125(26):268006. PubMed ID: 33449706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasielastic light scattering: effect of ionic strength on the internal dynamics of DNA.
    Caloin M; Wilhelm B; Daune M
    Biopolymers; 1977 Oct; 16(10):2091-2104. PubMed ID: 911993
    [No Abstract]   [Full Text] [Related]  

  • 18. Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering.
    Salmon JB; Bécu L; Manneville S; Colin A
    Eur Phys J E Soft Matter; 2003 Mar; 10(3):209-21. PubMed ID: 15015103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of human cervical mucus from light scattering measurements.
    Volochine B; Cazabat AM; Chretien FC; Kuntsmann JM
    Hum Reprod; 1988 Jul; 3(5):577-82. PubMed ID: 3170698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of single-walled carbon nanotubes on lysozyme gelation.
    Tardani F; La Mesa C
    Colloids Surf B Biointerfaces; 2014 Sep; 121():165-70. PubMed ID: 24975732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.