These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33320813)

  • 1. Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials.
    Behboodi M; Mahnam A; Marateb H; Rabbani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2762-2772. PubMed ID: 33320813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience.
    Cabrera Castillos K; Ladouce S; Darmet L; Dehais F
    Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Jun; 221():106859. PubMed ID: 35569239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Frequency Discrete-Interval Binary Sequence in Asynchronous C-VEP-Based BCI for Visual Fatigue Reduction.
    Lai E; Mai X; Ji M; Li S; Meng J
    IEEE J Biomed Health Inform; 2024 May; 28(5):2769-2780. PubMed ID: 38442053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to build a fast and accurate code-modulated brain-computer interface.
    Ramírez Torres JA; Daly I
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887702
    [No Abstract]   [Full Text] [Related]  

  • 13. A multi-target brain-computer interface based on code modulated visual evoked potentials.
    Liu Y; Wei Q; Lu Z
    PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Five Shades of Grey: Exploring Quintary
    Gembler FW; Rezeika A; Benda M; Volosyak I
    Comput Intell Neurosci; 2020; 2020():7985010. PubMed ID: 32256553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces.
    Sato JI; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.