These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33320890)
1. Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging. Teh K; Armitage P; Tesfaye S; Selvarajah D; Wilkinson ID PLoS One; 2020; 15(12):e0243907. PubMed ID: 33320890 [TBL] [Abstract][Full Text] [Related]
2. Classification of truck-involved crash severity: Dealing with missing, imbalanced, and high dimensional safety data. Mohammadpour SI; Khedmati M; Zada MJH PLoS One; 2023; 18(3):e0281901. PubMed ID: 36947539 [TBL] [Abstract][Full Text] [Related]
3. A quantum-based oversampling method for classification of highly imbalanced and overlapped data. Yang B; Tian G; Luttrell J; Gong P; Zhang C Exp Biol Med (Maywood); 2023 Dec; 248(24):2500-2513. PubMed ID: 38281087 [TBL] [Abstract][Full Text] [Related]
4. Diabetic peripheral neuropathy class prediction by multicategory support vector machine model: a cross-sectional study. Kazemi M; Moghimbeigi A; Kiani J; Mahjub H; Faradmal J Epidemiol Health; 2016; 38():e2016011. PubMed ID: 27032459 [TBL] [Abstract][Full Text] [Related]
5. Comparative Study of Classification Algorithms for Various DNA Microarray Data. Kim J; Yoon Y; Park HJ; Kim YH Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328048 [TBL] [Abstract][Full Text] [Related]
6. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study. Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890 [No Abstract] [Full Text] [Related]
7. The Impact of Oversampling with SMOTE on the Performance of 3 Classifiers in Prediction of Type 2 Diabetes. Ramezankhani A; Pournik O; Shahrabi J; Azizi F; Hadaegh F; Khalili D Med Decis Making; 2016 Jan; 36(1):137-44. PubMed ID: 25449060 [TBL] [Abstract][Full Text] [Related]
8. Classification of ADHD with fMRI data and multi-objective optimization. Shao L; You Y; Du H; Fu D Comput Methods Programs Biomed; 2020 Nov; 196():105676. PubMed ID: 32791440 [TBL] [Abstract][Full Text] [Related]
9. COVID-19 cough classification using machine learning and global smartphone recordings. Pahar M; Klopper M; Warren R; Niesler T Comput Biol Med; 2021 Aug; 135():104572. PubMed ID: 34182331 [TBL] [Abstract][Full Text] [Related]
10. Assessing and mitigating the effects of class imbalance in machine learning with application to X-ray imaging. Qu W; Balki I; Mendez M; Valen J; Levman J; Tyrrell PN Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2041-2048. PubMed ID: 32965624 [TBL] [Abstract][Full Text] [Related]
11. Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury. Masood F; Farzana M; Nesathurai S; Abdullah HA Proc Inst Mech Eng H; 2020 Sep; 234(9):955-965. PubMed ID: 32605433 [TBL] [Abstract][Full Text] [Related]
12. Pairwise FCM based feature weighting for improved classification of vertebral column disorders. Unal Y; Polat K; Erdinc Kocer H Comput Biol Med; 2014 Mar; 46():61-70. PubMed ID: 24529206 [TBL] [Abstract][Full Text] [Related]
13. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
14. Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees. Elsayad AM; Nassef AM; Al-Dhaifallah M; Elsayad KA Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322123 [TBL] [Abstract][Full Text] [Related]
15. Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set. Par OE; Akcapinar Sezer E; Sever H Stud Health Technol Inform; 2019 Jul; 262():344-347. PubMed ID: 31349338 [TBL] [Abstract][Full Text] [Related]
17. Inverse free reduced universum twin support vector machine for imbalanced data classification. Moosaei H; Ganaie MA; Hladík M; Tanveer M Neural Netw; 2023 Jan; 157():125-135. PubMed ID: 36334534 [TBL] [Abstract][Full Text] [Related]
18. Identifying β-thalassemia carriers using a data mining approach: The case of the Gaza Strip, Palestine. AlAgha AS; Faris H; Hammo BH; Al-Zoubi AM Artif Intell Med; 2018 Jun; 88():70-83. PubMed ID: 29730048 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine. Wang KF; An J; Wei Z; Cui C; Ma XH; Ma C; Bao HQ Front Bioeng Biotechnol; 2021; 9():802712. PubMed ID: 35127672 [TBL] [Abstract][Full Text] [Related]
20. Conversion of adverse data corpus to shrewd output using sampling metrics. Ashraf S; Saleem S; Ahmed T; Aslam Z; Muhammad D Vis Comput Ind Biomed Art; 2020 Aug; 3(1):19. PubMed ID: 32779031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]