These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33321059)

  • 1. Identification of
    Palazzo O; Rass M; Brembs B
    Open Biol; 2020 Dec; 10(12):200295. PubMed ID: 33321059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila.
    Castells-Nobau A; Eidhof I; Fenckova M; Brenman-Suttner DB; Scheffer-de Gooyert JM; Christine S; Schellevis RL; van der Laan K; Quentin C; van Ninhuijs L; Hofmann F; Ejsmont R; Fisher SE; Kramer JM; Sigrist SJ; Simon AF; Schenck A
    PLoS One; 2019; 14(2):e0211652. PubMed ID: 30753188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song.
    Lawton KJ; Wassmer TL; Deitcher DL
    Behav Brain Res; 2014 Jul; 268():213-21. PubMed ID: 24747661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβ
    Schatton A; Scharff C
    Eur J Neurosci; 2017 Nov; 46(9):2534-2541. PubMed ID: 28921711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FoxP influences the speed and accuracy of a perceptual decision in Drosophila.
    DasGupta S; Ferreira CH; Miesenböck G
    Science; 2014 May; 344(6186):901-4. PubMed ID: 24855268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila FoxP mutants are deficient in operant self-learning.
    Mendoza E; Colomb J; Rybak J; Pflüger HJ; Zars T; Scharff C; Brembs B
    PLoS One; 2014; 9(6):e100648. PubMed ID: 24964149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily.
    Santos ME; Athanasiadis A; Leitão AB; DuPasquier L; Sucena E
    Mol Biol Evol; 2011 Jan; 28(1):237-47. PubMed ID: 20651048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in
    Ehweiner A; Duch C; Brembs B
    F1000Res; 2024; 13():116. PubMed ID: 38779314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry.
    Schatton A; Mendoza E; Grube K; Scharff C
    J Comp Neurol; 2018 Jun; 526(9):1589-1610. PubMed ID: 29536541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor control by the central complex in Drosophila-An analysis of the tay bridge mutant.
    Poeck B; Triphan T; Neuser K; Strauss R
    Dev Neurobiol; 2008 Jul; 68(8):1046-58. PubMed ID: 18446784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells.
    Pech U; Dipt S; Barth J; Singh P; Jauch M; Thum AS; Fiala A; Riemensperger T
    Front Neural Circuits; 2013; 7():147. PubMed ID: 24065891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for Drosophila mushroom body neurons in olfactory learning and memory.
    Akalal DB; Wilson CF; Zong L; Tanaka NK; Ito K; Davis RL
    Learn Mem; 2006; 13(5):659-68. PubMed ID: 16980542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic Integration of Sensory Evidence in Perceptual Decision-Making.
    Groschner LN; Chan Wah Hak L; Bogacz R; DasGupta S; Miesenböck G
    Cell; 2018 May; 173(4):894-905.e13. PubMed ID: 29706545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse Control of Turning Behavior by Dopamine D1 Receptor Signaling in Columnar and Ring Neurons of the Central Complex in Drosophila.
    Kottler B; Faville R; Bridi JC; Hirth F
    Curr Biol; 2019 Feb; 29(4):567-577.e6. PubMed ID: 30713106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Dual Role of the Dopaminergic System on Locomotion and the Innate Value for an Aversive Olfactory Stimulus in Drosophila.
    Fuenzalida-Uribe N; Campusano JM
    Neuroscience; 2018 Feb; 371():433-444. PubMed ID: 29292079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory.
    Montague SA; Baker BS
    PLoS One; 2016; 11(10):e0164516. PubMed ID: 27764141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory.
    Turrel O; Lampin-Saint-Amaux A; Préat T; Goguel V
    J Neurosci; 2016 Sep; 36(37):9535-46. PubMed ID: 27629706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1.
    King I; Tsai LT; Pflanz R; Voigt A; Lee S; Jäckle H; Lu B; Heberlein U
    J Neurosci; 2011 Jan; 31(3):1139-48. PubMed ID: 21248138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion.
    Silva B; Hidalgo S; Campusano JM
    PLoS One; 2020; 15(2):e0229671. PubMed ID: 32101569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain.
    Kurusu M; Maruyama Y; Adachi Y; Okabe M; Suzuki E; Furukubo-Tokunaga K
    Dev Biol; 2009 Feb; 326(1):224-36. PubMed ID: 19084514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.