BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 33321259)

  • 21. A Spin-Tip Enrichment Strategy for Simultaneous Analysis of N-Glycopeptides and Phosphopeptides from Human Pancreatic Tissues.
    Tabang DN; Wang D; Li L
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization of the dynamics of histone modifications and their crosstalk using PTM-CrossTalkMapper.
    Kirsch R; Jensen ON; Schwämmle V
    Methods; 2020 Dec; 184():78-85. PubMed ID: 31978537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques.
    Zhao Y; Jensen ON
    Proteomics; 2009 Oct; 9(20):4632-41. PubMed ID: 19743430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Strategies to Address the Challenges in Top-Down Proteomics.
    Melby JA; Roberts DS; Larson EJ; Brown KA; Bayne EF; Jin S; Ge Y
    J Am Soc Mass Spectrom; 2021 Jun; 32(6):1278-1294. PubMed ID: 33983025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deciphering combinatorial post-translational modifications by top-down mass spectrometry.
    Brodbelt JS
    Curr Opin Chem Biol; 2022 Oct; 70():102180. PubMed ID: 35779351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional Gel Electrophoresis Coupled with Mass Spectrometry Methods for an Analysis of Human Pituitary Adenoma Tissue Proteome.
    Zhan X; Huang Y; Long Y
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29658936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combinatorial degradomics: Precision tools to unveil proteolytic processes in biological systems.
    Savickas S; Kastl P; Auf dem Keller U
    Biochim Biophys Acta Proteins Proteom; 2020 Jun; 1868(6):140392. PubMed ID: 32087360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of human salivary gland-derived intact proteome using top-down mass spectrometry.
    Wu S; Brown JN; Tolić N; Meng D; Liu X; Zhang H; Zhao R; Moore RJ; Pevzner P; Smith RD; Paša-Tolić L
    Proteomics; 2014 May; 14(10):1211-22. PubMed ID: 24591407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of Unknown Posttranslational Modifications by Top-Down Mass Spectrometry.
    Wilson JW; Zhou M
    Methods Mol Biol; 2022; 2500():181-199. PubMed ID: 35657594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pituitary adenoma nitroproteomics: current status and perspectives.
    Zhan X; Wang X; Desiderio DM
    Oxid Med Cell Longev; 2013; 2013():580710. PubMed ID: 23533694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms.
    Schaffer LV; Tucholski T; Shortreed MR; Ge Y; Smith LM
    Anal Chem; 2019 Sep; 91(17):10937-10942. PubMed ID: 31393705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs).
    Yakubu RR; Nieves E; Weiss LM
    Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics.
    Ramirez-Sagredo A; Sunny A; Cupp-Sutton K; Chowdhury T; Zhao Z; Wu S; Ann Chiao Y
    Res Sq; 2024 Jan; ():. PubMed ID: 38313302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics and transcriptomics analyses of secretagogin down-regulation in human non-functional pituitary adenomas.
    Zhan X; Evans CO; Oyesiku NM; Desiderio DM
    Pituitary; 2003; 6(4):189-202. PubMed ID: 15237930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting Alzheimer's Disease Molecular Substrates by Proteomics and Discovery of Novel Post-translational Modifications.
    Deolankar SC; Patil AH; Koyangana SG; Subbannayya Y; Prasad TSK; Modi PK
    OMICS; 2019 Jul; 23(7):350-361. PubMed ID: 31225774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete posttranslational modification mapping of pathogenic Neisseria meningitidis pilins requires top-down mass spectrometry.
    Gault J; Malosse C; Machata S; Millien C; Podglajen I; Ploy MC; Costello CE; Duménil G; Chamot-Rooke J
    Proteomics; 2014 May; 14(10):1141-51. PubMed ID: 24459079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying Homologous Proteins and Proteoforms.
    Malioutov D; Chen T; Airoldi E; Jaffe J; Budnik B; Slavov N
    Mol Cell Proteomics; 2019 Jan; 18(1):162-168. PubMed ID: 30282776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Throughput Quantitative Top-Down Proteomics: Histone H4.
    Holt MV; Wang T; Young NL
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2548-2560. PubMed ID: 31741267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.